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ABSTRACT

Gauss diagram formulas are extensively used to study Vassiliev link invariants. Now
we apply this approach to invariants of 3-manifolds, considering manifolds given by
surgery on framed links in the 3-sphere. We study the lowest degree case — the cele-
brated Casson–Walker invariant of rational homology spheres. This paper is dedicated
to a detailed treatment of 2-component links; a general case will be considered in a
forthcoming paper. We present simple Gauss diagram formulas for the Casson–Walker
invariant. This enables us to understand/separate its dependence on the unframed link
and on the framings. We also obtain skein relations for the Casson–Walker invariant
under crossing changes, and study its asymptotic behavior when framings tend to infin-
ity. Finally, we present results of extensive computer calculations.
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1. Introduction

One of the simplest types of formulas for Vassiliev invariants are so-called Gauss dia-
gram formulas. An invariant is calculated by counting (with weights) subdiagrams
of a special combinatorial type in a given link diagram. The simplest example is
counting with signs crossings of two link components to get their doubled linking
number. This approach to finite type invariants was successfully and extensively
used for invariants of both classical and virtual links (see, e.g. [6, 17]).

As a rule, techniques developed for link invariants were usually later applied for
3-manifold invariants using the surgery description of 3-manifolds. Indeed, config-
uration spaces integrals (arising from the perturbative Chern–Simons theory) and
the Kontsevich integral were all adjusted and applied for 3-manifold invariants.
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Surprisingly, the simplest of those — the Gauss diagram technique — was not,
until now, applied to invariants of 3-manifolds.

We start filling this gap by studying the case of the lowest degree, namely
the celebrated Casson invariant λ(ML) (or rather its generalized versions — the
Casson–Walker invariant λw(M) and the Lescop invariant λL(M) = |H1(M)|

2 λw(M),
see [21, 10]). Note that λw(M) is one of the fundamental invariants of rational
homology spheres. The restriction of 1

2λw(M) to the class of integer homology
spheres is an integer extension of the Rokhlin invariant [1, 21]. In the theory of finite
type invariants of 3-manifolds (see, e.g. [5]), it is the simplest Q-valued invariant
after |H1(M)|. However, λw(M) remains in general quite difficult to calculate. While
it is easy to do for a manifold MK obtained from S3 by integer surgery on a framed
knot K, the same question for links remains quite complicated, apart from the
well-studied simple case of unimodular algebraically split links. In particular, for 2-
component links satisfactory formulas only exist for some special cases [9]. Formulas
from [10], although explicit, were not much applied or studied, possibly due to a
large number of terms of various nature and their complicated or cumbersome
definitions. While Lescop’s general formulas for λL(M) seem to imply all other
formulas of [9, 7, 8], including also formulas of this paper, we feel that a simple
explicit formula remains of a considerable interest.

Our approach is elementary, so allows a simple computation of the invariant
directly from any integer-framed link diagram and makes many of its properties
transparent. We proceed by the number of components of a given framed link
L. When L is a knot, λw(ML) is closely related to the simplest finite type knot
invariant v2 — the second coefficient of the Alexander–Conway polynomial. So its
properties are easy to study knowing the behavior of v2; in particular, the Gauss
diagram formula is well-known (see [16, 17]). This paper is dedicated to a similar
detailed treatment of the 2-component case. The general n-component case will be
discussed in a forthcoming paper.

A special case of two component links with zero-framed components was studied
in [9]. While the invariant is described there only by means of its behavior under a
self-crossing of one of the components, a Gauss diagram formula is in fact implicit
there. We show that the results of [9] extend to the case of arbitrary integer framings
and provide a simple Gauss diagram formula in this general case (see Definition 6.1
and Theorem 6.3). The main ingredient of this formula appeared first in [16] and
is now known as the generalized Sato–Levine invariant, see [2, 3, 9, 13]. The Gauss
diagram formula enables us to calculate the values of λw(ML) in a simple and
straightforward way starting from any diagram of a 2-component link.

Our additional goal is to understand and separate the dependence of λw(ML)
on the underlying topological type of the link and on the framings. This is also
evident from the formula. In particular, we observe an interesting asymptotics of
the Casson–Walker invariant as both (or just one of) the framings are rescaled
and taken to infinity (Theorem 10.1). It is interesting that in two special cases the
asymptotical behavior of λw(ML) turns out to be very different from the general
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case. The first case appears when the framing of one of the components is zero. This
could be expected and reflects the fact that the manifold obtained by surgery on
this component is not a homology sphere. Another — somewhat more surprising —
special case is when the framings of two components are opposite to each other.

We also deduce a simple skein relation for λw(M) which relates its change under
a crossing change between two components to its values on the smoothed link and
the sublinks (see Theorem 11.2 and Definition 6.1).

This has interesting implications for the theory of finite type (or perturbative)
invariants of 3-manifolds. Indeed, this theory is well-studied only for integer homol-
ogy spheres, and thus was defined only on special classes of surgery links, with a
complicated Borromean-type modification [12] playing the role of a crossing change.
The behavior of an invariant under a self-crossing of one of the link components Li

easily fits into the theory (since it may be obtained by adding a new small 1-framed
component going around two strands of Li near the crossing), and thus is well-
understood [8]. A crossing change between different components, however, changes
the homology of the resulting manifold, so does not fit the theory of finite type
invariants of 3-manifolds. Our work implies, however, that the relation between
finite type invariants of links and 3-manifolds is closer than one could expect and
that the behavior of these invariants under such crossing changes may be under-
stood as well.

We remark that while in this paper we usually restrict our consideration to the
case when ML is a rational homology sphere, our formulas are well defined also in
case when ML is not such. In this case our formula gives the Lescop’s generalization
of the Casson–Walker invariant.

We sum up the goals of this paper in the following

Problem. Given a framed 2-component link L = {L1, L2} with the integer linking
matrix L, we want to

(1) Find simple Gauss diagram formulas for λw(ML);
(2) Understand/separate the dependence of λw(ML) on L (considered as an

unframed link) and on L.
(3) Obtain skein relations for λw(ML) under crossing changes of L.
(4) Study an asymptotic behavior of λw(ML) when framings tend to infinity.

2. Arrow Diagrams

Let A be an oriented 3-valent graph whose edges are divided into two classes: fat
and thin. The union of all vertices and all fat edges of A is called a skeleton of A.

Definition 2.1. A is called an arrow diagram, if the skeleton of A consists of
disjoint circles. Thin edges are called arrows.

It follows from the definition that each arrow connects two vertices, which may
lie in the same circle or in different circles. By a based arrow diagram we mean an
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Fig. 1. Simple examples of arrow diagrams.

arrow diagram with a marked point in the interior of one of its fat edges. See Fig. 1
for simple examples of based and unbased arrow diagrams.

3. Gauss Diagrams

Recall that an n-component link diagram is a generic immersion of the disjoint union
of n ≥ 1 oriented circles to plane, equipped with the additional information on over-
passes and underpasses at double points. Any link diagram can be presented numer-
ically by its Gauss code, which consists of several strings of signed integers. The
strings are obtained by numbering double points and traversing the components.
Each time when we pass a double point number k, we write k if we are on the upper
strand and −k if on the lower one. If we prefer to distinguish knots and their mir-
ror images or if we are considering a link with ≥ 2 components, then an additional
string of εi = ±1 called chiral signs is needed. Here i runs over all double points ai

of the diagram and signs are determined by the right hand grip rule. See Fig. 2.
A convenient way to visualize a Gauss code is a Gauss diagram consisting of the

oriented link components with the preimages of each double point connected with
an arrow from the upper point to the lower one. Each arrow c is equipped with
the chiral sign of the corresponding double point. The numbering of endpoints of
arrows is not necessary anymore, see Fig. 3. We say that a link diagram is based
if a non-double point in one of its components is chosen. An equivalent way of
saying this consists in considering long links in R3, when the base point is placed
in infinity. If the link is based, then the corresponding Gauss diagram is based too.
Note that forgetting signs converts any Gauss diagram into an arrow diagram, but
not any arrow diagram (for example, a fat circle with two thin oriented diameters)
can be realized by a Gauss diagram of a link. However, that is possible, if we allow
virtual links. This is actually the main idea of the virtualization.

Fig. 2. A 2-component link and its Gauss code.
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Fig. 3. Two presentations of the Gauss diagram for the link diagram in Fig. 2.

4. Arrow Diagrams as Functionals on Gauss Diagrams

As described in [16, 6], any arrow diagram A defines an integer-valued function
〈A, ∗〉 on set of all Gauss diagrams. Let A be an n-component arrow diagram and
G be an n-component Gauss diagram. By a representation of A in G we mean an
embedding of A to G which takes the circles and arrows of A to the circles, respec-
tively, arrows of G such that the orientations of all circles and arrows are preserved.
If both diagrams are based, then representations must respect base points. For a
given representation ϕ: A → G we define its sign by ε(ϕ) =

∏
ε(ϕ(a)), where the

product is taken over all arcs a ∈ A.

Definition 4.1. Let A be an n-component arrow diagram. Then, for any n-
component arrow diagram G we set 〈A, G〉 =

∑
ε(ϕ), where the sum is taken

over all representations of A in G.

Example 4.2. Let us describe functions for arrow diagrams A1 − A4 shown in
Fig. 1. Evidently, A1 determines the writhe of the link, which is defined as the sum
of the chiral signs of all double points. Let G be a Gauss diagram of an oriented
2-component link L = L1 ∪ L2. Then 〈A2, G〉 = 2n, where n = lk(L1, L2) is the
linking number of the components. Indeed, for any arrow of G we have exactly one
representation of A2 to G. Therefore, all double points contribute to 〈A3, G〉 (not
only points where the one preferred component is over the other). If we insert a
base point into A2 and a base point into G (thus fixing ordering of the two link
component), we get n without doubling. It means that 〈A3, G〉 = lk(L1, L2). The
meaning of 〈A4, G〉 is more complicated. If G is a Gauss diagram of a knot K ⊂ S3,
then 〈A4, G〉 is the second coefficient v2 of the Conway polynomial of K, which is
often called the Casson invariant of K. See [17] for a diagrammatic description and
properties of v2.

Example 4.3. For arrow diagrams U1, U2 shown in Fig. 4 and the Gauss diagram
G shown in Fig. 3, we have 〈U1, G〉 = 0 and 〈U2, G〉 = 1. The image of the unique
representation of U2 to G contains arrows 2, 3, 4.

Remark 4.4. Often it is convenient to extend Definition 4.1 by linearity to the
free abelian group generated by arrow diagrams. Let A =

∑m
i=1 kiAi be a linear

combination of arrow diagrams. In general, the value 〈A, G〉 depends on the choice
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Fig. 4. Two arrow diagrams.

of the Gauss diagram G of a given link L as well as on the choice of the base point.
However, for some carefully composed linear combinations of arrow diagrams the
result does not depend on the above choices. This gives a link invariant 〈A, G〉,
which we will denote by A(L). It is easy to show that such an invariant is of finite
type. Moreover, any finite type invariant of long knots can be presented in such a
form. A similar result for links is unknown. See [6].

5. An Arrow Diagram Invariant of Degree Three

Consider the following linear combination U = U1+U2 +U3+U4 of arrow diagrams
(see Fig. 5).

Example 5.1. For the link and Gauss diagrams shown in Figs. 2 and 3, we have
〈U, G〉 = 1 − 1 = 0, since there are only two representations of summands of U in
G: one representation of U2 (see Example 4.3) and one representation of U4 with
arrows 2, 4, 5 in its image.

Example 5.2. For the link and Gauss diagrams shown in Fig. 6, we have 〈U, G〉 =
−1 − 1 = −2, since no summands of U have representation in G except the first
one which has two representations described by arrow triples (2, 5, 7) and (4, 5, 7).

Let n be an integer and B an unknotted annular band having n negative full
twists if n ≥ 0 and |n| positive full twists if n < 0, see Fig. 7 for n = 5. If we equip
the components of ∂B by orientations induced by an orientation of B, then their
linking number is equal to n.

Definition 5.3. The 2-component link ∂B is called the generalized Hopf link and
denoted H(n). Denote by H(n, a, b) the generalized Hopf link H(n) with framings
a, b of its components.

The orientation of components of ∂B induced by an orientation of B is a part of
definition of H(n). If we reverse orientation of one of them, we get a new oriented

Fig. 5. Remarkable linear combination of arrow diagrams.



July 3, 2009 14:43 WSPC/134-JKTR 00721

A Simple Formula for the Casson–Walker Invariant 847

Fig. 6. Link 82
11 in the Alexander–Briggs–Rolfsen Table [20].

Fig. 7. Generalized Hopf link H(n) for n = 5.

link H̄(n) with the linking number of components −n. A diagram of H(n) and
H̄(n) for n = 3 are shown on top and bottom of Fig. 8, respectively.

Example 5.4. The diagrams of H(n) and H̄(n) mentioned above differ only by
orientation of one component. Nevertheless, their Gauss diagrams Gn and Ḡn look
quite different, see Fig. 8 for n = 3. For G3 we have 〈U, G3〉 = 0, since no summands
of U have representation in G3. Of course, the same fact holds for any n. For
the bottom diagram Ḡ3 we get 〈U, Ḡ3〉 = −4. Indeed, in this case there are four
representations of U4 in Ḡ3. They can be described by four triples of positive arrows
(1, 2, 3), (1, 2, 5), (1, 4, 5), (3, 4, 5) contained in their images. Since 0 = 〈U, G3〉 	=
〈U, Ḡ3〉 = −4, we may conclude that the value of 〈U, G〉 depends of orientation
of the components. Nevertheless, the following proposition shows that aside this
phenomenon 〈U, G〉 is invariant.

Proposition 5.5. U determines an invariant U(L) = 〈U, G〉 for oriented links of
two ordered components.
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Fig. 8. Links H(3) and H̄(3).

Proof. We will always assume that the base point is on the first component. It
suffices to show that 〈U, G〉 is invariant with respect to

(1) Reidemeister moves far from the base point.
(2) Replacing the base point within the first component.

In order to verify the invariance under Reidemeister moves, it suffices to show
that 〈U, R〉 = 0, where R runs over all relations of the Polyak algebra P defined
in [6].

Invariance of 〈U, G〉 under replacing the base point within the same component
follows from the observation that two link diagrams with the common base point in
their first components are Reidemeister equivalent if and only if they are equivalent
via Reidemeister moves performed far from the common base point. One can give a
“folklore” reformulation of that fact by saying that the theory of links is equivalent
to the theory of long links (having in mind that the base point is at infinity).

Once the invariance of U(L) is established, one can identify it with the general-
ized Sato–Levine invariant c3(L)− (c2(L1) + c2(L2))c1(L) (see [2, 3, 9, 13]), where
ck is the coefficient at zk of the Conway polynomial. There are several ways to do
that. In particular, one may show that 〈U, G〉 does not depend on the ordering of
the components of L. Then, the identification follows from the fact that it is an
invariant of degree three for 2-component links and such invariants are classified.
So it suffices to check values of U(L) on a few simple links. Another way to identify
U(L) is to check that it satisfies a simple skein relation under crossing change of
one of the components. Then its values on generalized Hopf links determine the
invariant.
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We will follow the latter scheme of proof, since it will also be the easiest way
to relate the function µ(L) from Definition 6.1 below and λw(ML). Alternatively,
instead of checking values of U(L) on generalized Hopf links, one may check that
U(L) satisfies an appropriate skein relation under crossing change of two different
components (and vanishes on the unlink). This idea will be used in Sec. 11 to extract
a skein formula for the Casson–Walker invariant.

6. The Formula

Let L = L1 ∪ L2 be an oriented 2-component framed link. Denote by a, b, and n

the framings of L1, L2, and their linking number, respectively. Suppose that the
integer linking matrix L =

(
a n
n b

)
of L has non-zero determinant D = Det(L).

The signature of L will be denoted by σ. It is easy to see that σ can be found by
the following rule:

σ =




0, if D < 0,

2, if D > 0 and a + b > 0,

−2, if D > 0 and a + b < 0.

We point out that if D > 0, then a, b have the same sign. Therefore, in this case σ

is determined only by the sign, say, of a.
Recall that v2(K) denotes the Casson invariant 〈A4, GK〉 of a knot K ⊂ S3 (see

Fig. 1 for arrow diagram A4). It coincides with the coefficient at z2 of the Conway
polynomial of K. It can also be extracted from the Alexander polynomial ∆K(t)
normalized so that ∆K(t−1) = ∆K(t) and ∆K(1) = 1 as follows: v2(K) = 1

2∆′′
K(1).

We introduce a function µ:L → Q, where L is the set of all oriented framed
2-component links, as follows. Let L = L1 ∪ L2 ∈ L .

Definition 6.1.

µ(L) = av2(L2) + bv2(L1) − U(L) +
1
12

(n3 − n) +
1
24

(a + b)(2n2 − ab − 2).

Example 6.2. Let us calculate µ(L), where L = H(n, a, b) is the generalized Hopf
link H(n) framed by a, b, see Definition 5.3. It is easy to see that U(H(n)) = 0
(see Example 5.4, where we have shown that U = 0 for H(3)). Taking into account
that v2(L1) = v2(L2) = 0, we get

µ(H(n, a, b)) =
1
12

(n3 − n) +
1
24

(a + b)(2n2 − ab − 2).

Let ML be the manifold obtained by surgery on L. Note that our assumption
D 	= 0 means that the corresponding 3-manifold ML is a rational homology sphere,
i.e. the first homology group of ML is finite. Its order |H1(ML)| equals to |D|.

Let λw(ML) be the Casson–Walker invariant of ML, see [21]. We normalize
it following Walker, so as to have 1

2λw(P120) = 1, where P120 is the positively
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oriented Poincaré homology sphere, obtained from S3 by surgery along the trefoil
with framing 1.

Theorem 6.3 (Main). For any oriented framed 2-component link L = L1 ∪ L2,

we have

1
2
D(λw(ML) − 1

4
σ) = µ(L).

Example 6.4. Let us apply the main theorem for calculation of the Casson–Walker
invariant λw for the manifold MH(2,3,1), where H(2, 3, 1) is the Hopf link H(2)
framed by a = 3, b = 1 (see Fig. 9).

It follows from Example 6.2 that

1
2
λw(MH(2,3,1)) =

1
24D

(12 + (a + b)(2n2 − ab − 2) +
1
8
σ.

Substituting D = 3 · 1 − 22 = −1 and σ = 0 we get 1
2λw(MH(2,3,1)) = −1. This is

not surprising, since MH(2,3,1) is the negatively oriented Poincaré homology sphere
−P120. Indeed, one generalized destabilization move (sometimes called blow-down)
transforms H(2, 3, 1) into the left trefoil framed by −1.

The plan of proving the above theorem consists of two steps.

Step 1. We show that the correctness of equality 1
2D(λw(ML) − 1

4σ) = µ(L) is
preserved under self-crossing of a link component.

Step 2. We show that the equality is true for the Hopf links H(n), n 	= 0 framed
by a, b. We do that by comparing our formula for µ(H(n, a, b)) (see Exam-
ple 6.2) with Lescop’s formula for the values of λL for Seifert manifolds
(see [10, p. 97]).

Steps 1 and 2 imply Theorem 6.3, since any 2-component link can be transformed
by self-crossings of its components into a generalized Hopf link.

Let us pause to make few remarks on the role of the function µ.

1 3

Fig. 9. Generalized Hopf link H(2) framed by 3, 1.
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Remark 6.5. Theorem 6.3 implies that µ(L) does not depend on the orienta-
tion of the components and is preserved under handle slides. It is not a pure
3-manifold invariant, since some additional information from the surgery link is
needed (namely, the sign of D and the signature σ). However, it may be considered
as a convenient renormalization of the Casson invariant for technical purposes, since
it is better suited for calculations and has simpler skein properties.

Remark 6.6. It turns out that µ may be defined by a similar Gauss diagram
formula for n-component links with any n = 1, 2, 3, . . . . The general case n ≥ 3 will
be discussed in a forthcoming paper. Let us define it for n = 1. For a framed knot
K with framing a, we denote

µ(K) = v2(K) − 1
24

(a2 + 2), where v2(K) = 〈A4, GK〉.

Since values of λw for manifolds obtained by surgery on a framed knot are
well-known, it is easy to check that similarly to Theorem 6.3 one indeed has
1
2
D(λw(MK) − 1

4
σ(a)) = µ(K), where σ(a) is the signature of (1 × 1)-matrix (a),

i.e. the sign of a. This may be deduced also from Theorem 6.3, by considering K

stabilized by ±1-component. Now, we can rewrite µ(L) for 2-component links using
its values on sublinks:

µ(L) = µ(L1)b + µ(L2)a − U(L) +
1
12

(n3 − n) +
1
12

(a + b)n2.

7. Behavior of µ with Respect to Self-Crossings

Let us carry out Step 1. Suppose that a diagram G− of an oriented framed 2-
component link L− = K− ∪ S− is obtained from a diagram G+ of a framed link
L+ = K+ ∪ S+ by a single crossing change at a double point C of K+ such that
the chiral sign of C is 1 in K+ and −1 in K−. Note that K+ can be considered as
to consist of two loops (lobes) with endpoints in C. Denote by � the linking number
of the lobes, by k the linking number of one of the lobes with S+, and by n the
linking number of K+ and S+. Note that the crossing change preserves the linking
matrix L+ of L+.

Lemma 7.1. In the situation above we have

1
2
D(λw(ML+) − λw(ML−)) = b� − k(n − k) = µ(L+) − µ(L−),

where D = Det(L+) and b is the framing of S+.

Proof. The first equality is a partial case (for 2-component links) of the crossing
change formula, which is the main result of [7].
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Let us prove the second one. Since the crossing change preserves the linking
matrix, we have µ(L+)−µ(L−) = bv2(K+)− bv2(K−)−〈U, G+〉+ 〈U, G−〉. Recall
that the equality v2(K+) − v2(K−) = � is one of the main properties of v2, see [6].
For the Arf-invariant v2 mod 2 it was known long ago, see [12]. It follows that
bv2(K+) − bv2(K−) = b�.

Let us compute 〈U, G+〉−〈U, G−〉. Note that the Gauss diagrams G± are almost
identical. The only difference between them is that the arrows a+(C), a−(C) corre-
sponding to C have opposite orientations and signs. Let us analyze representations
of Ui, 1 ≤ i ≤ 4, in G±. We call a representation ϕ: Ui → G± significant, if its
image contains a±(C). Otherwise ϕ is insignificant. Since G± are identical out-
side a±(C), there is a natural bijection between insignificant representations of Ui

to G+ and G− such that the signs of corresponding representations are equal.
It follows that insignificant representations do not contribute to the difference
U(L+) − U(L−).

Case 1. Assume that the base point of L+ is in K+. Consider a significant repre-
sentation ϕ: Ui → G±. Since ϕ is significant, a+(C) is in its image and thus i = 1 or
i = 2. Any such representation ϕ is completely determined by two other arrows of
G± contained in the image of ϕ. The arrows join S± and the lobes of K+. It is easy
to see that the contribution of ϕ to the difference U(L+) − U(L−) is equal to the
product of the signs of those two arrows. Taking into account Example 4.2 (con-
taining Gauss diagram description of various linking numbers) we may conclude
that U(L+) − U(L−) = k(n − k).

Case 2. Assume that the base point of L+ is in S+. Since C is in K+, there are
no significant representations of U1, U2, U4 in G±. Moreover, any representation
ϕ: U3 → G± is completely determined by two arrows of G± which are contained in
the image of ϕ± and join S± with the lobes of K+. As above, the contribution of ϕ

to the difference U(L+) − U(L−) is equal to the product of the signs of those two
arrows. We may conclude that U(L+) − U(L−) = k(n − k) also in this case.

Example 7.2. Let L+ = L+
1 ∪ L+

2 be the link shown in Fig. 10 (all arrows have
positive signs). Suppose that L− = L−

1 ∪ L−
2 is obtained from L+ by a crossing

change at the double point C having number 1. We assume that the framings
of L+

1 , L+
2 are a, b. Note that n = 3, k is either 1 or 2, and � = 1. Therefore,

b� − k(n − k) = b − 2.
Now let us calculate µ(L+)−µ(L−). Since v2(L+

1 ) = 1 and v2(L+
2 ) = 0, it follows

from Definition 6.1 that µ(L+)−µ(L−) = b−U(L+
1 ) + U(L−

1 ). There are only two
representations of Ui, 1 ≤ i ≤ 4, to G±, namely a representation U1 → G+ having
sign 1 and a representation U2 → G− having sign −1. They cover arrows (1, 4, 7)
of G+ and (8, 7, 1̄) of G−, where 1̄ denotes the first arrow of G+ with reversed
orientation. Therefore, the total contribution of U to µ(L+)− µ(L−) is −2 and we
get µ(L+) − µ(L−) = b − 2 again.
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Fig. 10. There are only two representations of Ui, 1 ≤ i ≤ 4, to G±.

Corollary 7.3. Let L = L1 ∪L2 be an oriented 2-component link in S3 and U the
linear combination of arrow diagrams shown in Fig. 5. Then the invariant U(L) =
〈U, G〉 does not depend on the ordering of the components of L. It coincides with
the generalized Sato–Levine invariant c3(L) − (c2(L1) + c2(L2))c1(L), where ck is
the coefficient at zk of the Conway polynomial.

Proof. Let us compare values of U for two links which differ only by ordering. By
Lemma 7.1 the behavior of U under self-crossings does not depend on the ordering.
Thus it suffices to compare values of U on Hopf links H(n) with two different
orderings; but Example 5.4 shows that it is 0 in both cases. The last statement
follows from the fact that the generalized Sato–Levine invariant satisfies the same
skein relations and also vanishes on H(n).

8. Model Manifolds Q(n, a, b)

This section is dedicated to the study of the 3-manifold obtained by surgery on
H(n, a, b). To that end, let us introduce another framed link S(A, B, C) shown in
Fig. 11. It consists of four unknotted circles framed by A = a+n, B = b+n, C = −n,
and 0 such that each of the first three circles links the forth circle framed be 0 exactly
ones.

Fig. 11. Framed link presenting a Seifert manifold.
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Lemma 8.1. Manifolds obtained by Dehn surgery of S3 along H(n, a, b) and
S(A, B, C) are related by a homeomorphism which preserves orientations induced
from the orientation of S3.

Proof. Adding the C-framed component to the components framed by A, B and
then removing the 0-framed component together with the C-framed one, one can
easily show that S(A, B, C) is Kirby equivalent to H(n, a, b).

Let us denote by Q = Q(n, a, b) the manifold obtained from S3 by Dehn surgery
along H(n, a, b) or S(A, B, C). Performing surgery of S3 along the 0-framed com-
ponent of S(A, B, C), we get S2 ×S1 such that the other three components are the
fibers of the natural fibration S2 × S1 → S2. It follows that Q is a Seifert manifold
fibered over S2 with three exceptional fibers of types (A, 1), (B, 1), (C, 1) Here we
neglect the usual convention that the first parameters of exceptional fibers must be
positive. Our goal is to calculate µ(Q).

Remark 8.2. As we have seen above, manifolds of the type MH(n,a,b) have a very
simple structure: they are Seifert manifolds fibered over S2 with three exceptional
fibers of type (p,±1). The values of µ(MH(n,a,b)) can certainly be obtained using
the main Lescop formula [10, pp. 12, 13], but we prefer to take into account the
specific structure of MH(n,a,b) and use simpler Lescop’s formula [10, p. 97].

Note that the Euler number of Q is 1
A + 1

B + 1
C and the normalized parameters

of the exceptional fibers are (|X |, s(X)mod|X |), where X = A, B, C and s(X) is
the sign of X . It turns out that the signature σ of L may be expressed via the signs
of A, B, C:

Lemma 8.3. For any numbers A, B, C such that D = AB + AC + BC 	= 0,

K = ABC 	= 0, and e = D/K > 0 we have σ = s(A) + s(B) + s(C) − 1, where
s(X) denotes the sign of X and σ is the signature of the matrix L =

(
a n
n b

)
for

a = A + C, b = B + C, n = −C.

Proof. One can extract from Lemma 8.1 that the matrices L =
(

a n
n b

)
and(

A 0 0 1
0 B 0 1
0 0 C 1
1 1 1 0

)
have the same signature. It follows that permutations of A, B, C

do not affect the correctness of Lemma 8.3. So we may assume that A ≥ B ≥ C.
Suppose that K > 0. Then D > 0 and either A ≥ B ≥ C > 0 and σ = 2s(a) =

2s(b) = 2 or A > 0, B < 0, C < 0 and σ = 2s(a) = 2s(b) = −2. In both cases we
get the conclusion of the lemma.

Now suppose that K < 0. Since D < 0, we have σ = 0 and exactly one negative
number among A, B, C. Therefore, s(A) + s(B) + s(C) = 1 + σ.
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9. Casson–Walker Invariant for Model Manifolds

Let M be a rational homology sphere. Recall that the Lescop invariant λL(M) is
related to the Casson–Walker invariant λw(M) by

λL(M) =
1
2
|H1(M)|λw(M),

see [10, 19]. If M is presented by an oriented framed link L with linking matrix L,
then we can rewrite that formula as follows:

s(D)λL(M) =
1
2
Dλw(M),

where D is the determinant of L and s(D) is the sign of D. We will use Lescop’s
formula [10, p. 97] for the Seifert manifold M = (S2; (a1, b1), . . . , (am, bm)(1, b)) (in
the original notation M = (Oo0|b; (ak, bk)k=1,...,m)):

λL(M) =

(
sign(e)

24

(
2 − m +

m∑
k=1

1
a2

k

)
+

e|e|
24

− e

8
− |e|

2

m∑
k=1

s(bk, ak)

) ∣∣∣∣∣
m∏

k=1

ak

∣∣∣∣∣ ,
where 0 < bk < ak, e = b +

∑m
k=1 bk/ak is the Euler number of M , and s(bk, ak)

are the Dedekind sums.
Let us recall the definition and properties of s(b, a). If a, b are coprime integers,

then s(b, a) is defined by

s(b, a) =
|a|∑

k=1

((
k

a

))((
kb

a

))
,

where

((x)) =


x − [x] − 1

2
, if x 	∈ Z,

0, if x ∈ Z,

is the sawtooth function, see Fig. 12.
It follows from the definition that s(b, a) possesses the property s(b, a) =

s(−b,−a) = −s(−b, a) = −s(b,−a) = s(b±a, a). In particular, s(b, a) only depends
on b mod a and a.

Proposition 9.1. Let Q = Q(n, a, b) be obtained by surgery of S3 along the framed
generalized Hopf link H(n, a, b). Then 1

2D(λw(M) − 1
4σ) = µ(H(n, a, b)), where

µ(H(n, a, b)) is given by Example 6.2.

Fig. 12. The sawtooth function.
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Proof. Recall from Sec. 8 that Q is a Seifert manifold fibered over S2 with three
exceptional fibers of types (A, 1), (B, 1), (C, 1), where A = a+n, B = b+n, C = −n.
The Euler number of Q is e = 1

A + 1
B + 1

C and the normalized parameters of the
exceptional fibers are (|X |, s(X) mod |X |), where X = A, B, C and s(X) is the sign
of X .

Note that reversing signs of n, a, b (and hence signs of A, B, C and e) does not
affect the correctness of the conclusion of the lemma. So we may restrict ourselves
to the case e > 0.

The proof is a cumbersome but straightforward comparison of two expressions.
Let us introduce the following notations.

(1) K = ABC. Then e = D
K . Since e > 0, K and D have the same sign. We denote

it by s(D).
(2) P = A2B2 + A2C2 + B2C2. Then 1

A2 + 1
B2 + 1

C2 = P
K2 .

(3) S = AC(B−s(B))(B−2s(B))+AB(C−s(C))(C−2s(C))+BC(A−s(A))(A−
2s(A)). In order to explain the meaning of S, we recall that the Dedekind sums
s(1, �) can be calculated by the rule

s(1, �) =
1

12�
(� − s(�))(� − 2s(�)).

It follows that s(1, A) + s(1, B) + s(1, C) = S
12K .

(4) Σ = A + B + C.

Using this notation and applying the above Lescop formula, we get

24λL(Q) = ε

(
−K +

1
K

(P + D2 − DS) − 3D

)
.

Simple calculation shows that P − D2 = −2KΣ and 2D − S = K(3(s(A) +
s(B) + s(C)) − Σ). It follows that

24λL(Q) = ε(−K − 2Σ − DΣ + 3D(s(A) + s(B) + s(C) − 1)).

and, since λL(Q) = εD
2 λw(Q),

12Dλw(Q) = −K − 2Σ − DΣ + 3D(s(A) + s(B) + s(C) − 1).

Let us now substitute a = A + C, b = B + C, n = −C to the expression for
µ(H(n, a, b)) (see Example 6.2). We get

24µ(H(n, a, b)) = −C3 + ΣC2 − ΣD − 2Σ − CD.

Let us show that 12Dλw(Q) − 3Dσ − 24µ(H(n, a, b)) = 0. Performing the sub-
straction, we get

12Dλw(Q) − 3Dσ − 24µ(H(n, a, b))

= −K + 3D(s(A) + s(B) + s(C) − 1 − σ) + C3 − ΣC2 + CD
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or, taking into account that −K + C3 − ΣC2 + CD = 0,

12Dλw(Q) − 3Dσ − 24µ(H(n, a, b)) = 3D(s(A) + s(B) + s(C) − 1 − σ).

It remains to note that s(A) + s(B) + s(C) − 1 − σ = 0 by Lemma 8.3.

Proof of Main Theorem (which states that 1
2D(λw(ML) − σ

4 ) = µ(L), see
Theorem 6.3). We have realized the plan of the proof indicated in p. 850. Using
Lemma 7.1, we reduce the proof to the partial case of manifolds presented by
generalized framed Hopf links. Then, we use Proposition 9.1 for proving the theorem
in this partial case.

10. Asymptotic Behavior of the Casson–Walker Invariant

Let L = L1 ∪ L2 be an oriented framed 2-component link. Then λw(ML) depends
on the underlying link and on the framing. Theorem 6.3 allows us to understand the
contribution of those two ingredients. We use that for describing the asymptotic
behavior of λw as the parameters of the framing tend to ∞. For simplicity we
restrict ourselves to the simplest case when they have the form a = a0t, b = b0t and
t → ∞.

Theorem 10.1. Let a 3-manifold Mt be obtained by surgery of S3 along a framed
link L = L1 ∪L2 having linking matrix L(t) =

(
a0t n
n b0t

)
. Then the following holds.

Case 1. Suppose that a0 + b0 	= 0 and a0b0 	= 0. Then

λw(Mt) = − 1
12

(a0 + b0)t +
1
4
σ + r(t),

where σ is the signature of L(1) and r(t) → 0 as t → ∞.

Case 2. Suppose that a0 + b0 = 0 and a0b0 	= 0. Then

λw(Mt) = 2
v2(L1) − v2(L2)

a0
t−1 + r(t),

where r(t)t → 0 as t → ±∞.

Case 3. Suppose that a0b0 = 0. In order to be definite, we assume that b0 = 0.
Then

λw(Mt) = − a0

6n2
(n2 − 1 + 12v2(L2))t − 1

6n2
(n3 − n − 12U(L)).

Proof. Follows easily from Theorem 6.3 and Definition 6.1: we write down an
explicit expression for λw(Mt) and investigate its asymptotic behavior.

Let us illustrate the behavior of λw(Mt) graphically for a0+b0 	= 0, a0b0 	= 0, and
t → ∞. The right-hand sides of the expression for λw(Mt) (see the above proof) and
its approximation − 1

12 (a0 + b0)t+ 1
4σ(t) make sense for all (not necessarily integer)
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Fig. 13. The behavior of λw(Mt) and its approximation (dotted graph) for H(2, 3, 2).

values of t. We show the graphs of these functions for the generalized framed Hopf
link H(n, a0, b0), where n = 2, a0 = 3, b0 = 2 (Fig. 13) and n = 5, a0 = −3, b0 = 2
(Fig. 14). Both graphs in Fig. 13 have singularities at t = n2√

a0b0
≈ 0.8 (because of

the jump of σ(t)).
The following theorem shows the power series presentation of λw(Mt).

Theorem 10.2. Let a 3-manifold M(t) be obtained by surgery of S3 along a framed
link L = L(t) with linking matrix L(t) =

(
a0t n
n b0t

)
. Suppose that a0b0 	= 0. Then

for |t| > |n|√
|a0b0|

we have

λw(Mt) =
1
2
s(a0b0) − 1

12
(a0 + b0)t

+
1
12

∞∑
k=0

((C1 − C3(a0 + b0))Ck
3 t−(2k+1) + C2C

k
3 t−(2k+2)),

where s(a0b0) is the sign of a0b0, C1 = (2n2−2)(a0+b0)+24av2(L2)+24bv2(L1)
a0b0

, C2 =
−24U(L)+2n3−2n

a0b0
, and C3 = n2

a0b0
.
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Fig. 14. The behavior of λw(Mt) and its approximation for H(5,−3, 2).

Proof. Follows form Theorem 6.3 and Definition 6.1. The infinite series in
the expression for λw(Mt) arises after replacing D−1 = (a0bot

2 − n2)−1 by
t−2

a0b0

∑∞
k=0(

n2

a0b0
t−2)k.

11. A Skein-Type Relation for U and λw

A usual skein relation involves diagrams of three oriented links L+, L−, L0. The
diagrams are identical outside a small neighborhood of one positive crossing C

of the diagram for L+. The diagram of the second link L− is obtained from the
diagram of L+ by a crossing change at C while the diagram of the oriented knot
L0 has no crossings at C.

We will consider the case when L+ = L+
1 ∪ L+

2 , L− = L−
1 ∪ L−

2 are oriented
2-component links and C is a crossing point of L+

1 and L+
2 . Then L0 is a knot

obtained by coherent fusion of L+
1 and L+

2 , see Fig. 15. We shall refer to any triple
(L+, L−, L0) of the above type as an admissible skein triple.

Fig. 15. Three links participating in the skein-type relation.
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Lemma 11.1. For any admissible skein triple (L+, L−, L0) we have U(L+) −
U(L−) = v2(L0) − v2(L1) − v2(L2).

Proof. The statement may be deduced from the identification of U with the gen-
eralized Sato–Levine invariant, see Corollary 7.3. For completeness we provide a
simple direct proof using only the definition of U . Denote by G+, G−, G0 Gauss dia-
grams corresponding to the diagrams of L+, L−, L0. The Gauss diagrams are almost
identical. The only difference between G+ and G− is that the arrows a+(C), a−(C)
corresponding to C have opposite orientations and signs. Knot diagram G0 is
obtained by coherent fusion of the circles of G+ along a+(C). Chose a base point
in the first circle of G+ just before the initial point of a+(C). We may assume that
there are no endpoints of other arrows on small arcs containing the endpoints of
a+(C), a−(C), and on arcs of L0 obtained by their fusion. See Fig. 16, where those
free-of-endpoints arcs are shown dotted and the complementary arcs are numbered
by 1, 2. For reader’s convenience we have also placed arrow diagrams for U and v2.

Let us analyze representations of Uk, 1 ≤ k ≤ 4, in G±. As in the proof of
Lemma 7.1, we call a representation ϕ: Uk → G± significant, if its image contains
a±(C). Insignificant representations do not contribute to the difference U(L+) −
U(L−).

Let ϕ be a significant representation of Uk, 1 ≤ k ≤ 4, in G± and let ak ⊂ Uk

be the first arrow we meet travelling from the base point along the first circle of
Uk. Then the careful choice of the base point for G± tells us that ϕ takes ak to
a±(C). It follows that there is no significant representation of U1 in G± (since the
endpoints of a1 lie in the same circle of U1 while the endpoints of a±(C) lie in
different circles of G±).

By similar reason there are no significant representations of Uk, 2 ≤ k ≤ 4 in
G−. Indeed, ak is directed from the first circle of Uk to the second one while a−(C)
is directed from the second circle of G− to the first one.

Suppose that ϕ is a significant representation of Uk, 2 ≤ k ≤ 4 in G+. Let
us coherently fuse the circles of Uk along ak. It is easy to see that we get an
arrow diagram A4 (shown in Figs. 1 and 16) for calculation of v2, together with

Fig. 16. Skein triple of Gauss diagrams.



July 3, 2009 14:43 WSPC/134-JKTR 00721

A Simple Formula for the Casson–Walker Invariant 861

the corresponding representation ϕ′: A4 → G0. The values of ϕ and ϕ′ are equal.
Vice versa, any representation A4 → G0 such that arrows do not all land on the
image (under fusion) of the same circle of G+, determines a representation Uk →
G+ having the same value. The only representations A4 → G0 which have no
corresponding representation Uk → G+ are actually representations of A4 in the
Gauss diagram either of the first or the second circle of G+. It follows that U(L+)−
U(L−) = v2(L0) − v2(L1) − v2(L2).

As a result we get the following behavior of λw under a crossing change involving
two components:

Theorem 11.2. For any admissible skein triple (L+, L−, L0), we have

µ(L+) − µ(L−) = v2(L1) + v2(L2) − v2(L0) +
1
4
(n2 − n) +

1
12

(a + b)(2n − 1)

thus

D+

2
λw(L+) − D−

2
λw(L−) =

D+

8
σ+ − D−

8
σ− + v2(L1) + v2(L2) − v2(L0)

+
1
4
(n2 − n) +

1
12

(a + b)(2n − 1)

Proof. Directly follows from Lemma 11.1 and Theorem 6.3.

12. An Alternative Formula

Consider the following linear combination U ′ = U1 + U2 + 1
2 (U3 + U ′

3)+ 1
2 (U4 −U ′

4)
of arrow diagrams, see Fig. 17.

Lemma 12.1. Let L = L1 ∪L2 be an oriented 2-component link. Denote by L′ the
link L1 ∪L′

2 obtained from L by reversing the orientation of the second component.
Let G and G′ be their based Gauss diagrams (assuming that the base points are in the
first components). Then 〈U1, G〉 = 〈U1, G

′〉, 〈U2, G〉 = 〈U2, G
′〉, 〈U3, G〉 = 〈U ′

3, G
′〉,

〈U4, G〉 = −〈U ′
4, G

′〉, and 〈U ′, G〉 = 1
2 (〈U, G〉 + 〈U, G′〉).

Proof. Note that G and G′ actually coincide. The only difference is that their
second circles have opposite orientations and that arrows joining different circles

Fig. 17. Another remarkable linear combination of arrow diagrams.
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have opposite signs. First two equalities of the conclusion of the lemma are evident,
since any representation of Ui, i = 1, 2, to G determines a representation of Ui to
G′, and vice-versa. The images of those representations contains the same arrows.
Since exactly two of these arrows join different components, the values of the rep-
resentations are equal. Similarly, any representation of Uj , j = 3, 4 determines a
representation of U ′

j to G′, and vice-versa. The values of those representations are
the same for j = 3 and have opposite signs for j = 4. This is because the number
of arrows in the images of representations is 2 for j = 3 and 3 for j = 4. Taking the
sums, we get 〈U ′, G〉 = 1

2 (〈U, G〉 + 〈U, G′〉).

The following proposition and theorem are similar to Proposition 5.5 and
Theorem 6.3.

Proposition 12.2. U ′ determines an invariant U ′(L) = 〈U ′, G〉 for non-oriented
links of two numbered components.

Proof. It follows from Lemma 12.1 that 〈U ′, G〉 = 1
2 (〈U, G〉 + 〈U, G′〉). Therefore,

U ′(L) = 〈U ′, G〉 is an invariant of oriented links by Proposition 5.5. On the other
hand, 〈U ′, G〉 is invariant under reversing orientation of one of its components, since
the above expression for it is symmetric.

Theorem 12.3. For any non-oriented framed 2-component link L = L1 ∪ L2 we
have 1

2D(λw(ML) − 1
4σ) = µ′(L), where

µ′(L) = av2(L2) + bv2(L1) − U ′(L) +
1
24

(a + b)(2n2 − ab − 2).

Proof. Let us orient L and denote by L′ the oriented framed link obtained from L

by reversing orientation of L2. Note that the linking number n of the components
of L and the linking number n′ of the components of L′ have the same modules
and different signs, that is, n′ = −n. All other variables in the expressions for µ(L)
and µ(L′) (see Definition 6.1) except of U(L), U(L′) are the same. In other words,
a, b, D, σ and both v2 for L coincide with the corresponding variables for L′. It
follows from Lemma 12.1 that µ′(L) = 1

2 (µ(L)+µ(L′). Since µ(L) = 1
2D(λw(ML)−

1
4σ) = 1

2D(λw(ML′) − 1
4σ) = µ(L′) by Theorem 6.3, we get the conclusion.

13. Results of Computer Experiments

The formula for λw(M) from Theorem 6.3 is very convenient for calculation. If a
diagram of a link framed by integers of reasonable size has about a dozen cross-
ing points, then the manual calculation takes a few minutes. A simple computer
program written by V. Tarkaev accepts Gauss codes and takes only seconds for
calculating λw for framed links with thousands crossings. We present here a few
results of calculation λw for all rational homology 3-spheres which can be presented
by diagrams of 2-component (but not of 1-component) links with ≤ 9 crossings and



July 3, 2009 14:43 WSPC/134-JKTR 00721

A Simple Formula for the Casson–Walker Invariant 863

Table 1. How many manifolds have a given value of |λw|?

|λw| #M3 |λw| #M3 |λw| #M3 |λw| #M3

0 19 9/64 1 11/36 4 25/44 1
1/64 1 4/27 2 5/16 7 16/27 1
1/36 4 5/32 1 9/28 2 3/5 1
1/32 1 11/64 1 11/32 2 23/36 6
1/28 2 5/28 1 9/26 1 11/16 3
1/26 1 3/16 10 13/36 2 25/36 3
3/64 1 5/26 1 10/27 2 23/32 1
1/16 8 7/36 1 3/8 5 29/36 1
3/44 1 1/5 4 25/64 1 15/16 3
2/27 2 13/64 1 2/5 1 1 7
5/64 1 9/44 1 13/32 1 19/16 1
3/32 2 2/9 5 19/44 1 3/2 1
1/10 2 15/64 1 7/16 5 2 16
5/44 2 1/4 5 4/9 2 3 2
3/26 1 13/44 2 13/28 1 4 6
1/8 4 8/27 2 17/36 4 — —
5/36 2 3/10 1 1/2 6 — —

black-board framings. We thank Lins, who kindly prepared for us a list of Gauss
codes of those links.

• Number of different manifolds: 194
• Number of different values of |λw| for these manifolds: 66
• Numbers of different manifolds having given values of |λw| are presented in

Table 1.

We see from the table that for the set of 194 manifolds under consideration
the most popular values of |λw| are 0 (19 manifolds), 2 (16 manifolds), 3/16 (10
manifolds), 1/16 (8 manifolds), 5/16 and 1 (7 manifolds each). Exactly 30 values
of |λw| are taken by only one manifold each. In other words, those manifolds are
determined by |λw|. In average, each value is taken by only 3 different manifolds
from the list. This shows that the Casson–Walker invariant is unexpectedly infor-
mative. For example, the number of different first homology groups of the manifolds
under consideration is 17, so the average number of manifolds having a given group
is about 11.
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[3] P. M. Akhmetiev and D. Repovš, A generalization of the Sato–Levine invariant,
Trudy Mat. Inst. im. Steklova 221 (1998) 69–80; English transl. Proc. Steklov Inst.
Math. 221 (1998) 60–70.

[4] J. Hoste, A formula for Casson’s invariant, Trans. Amer. Math. Soc. 297 (1986)
547–562.

[5] S. Garoufalidis, M. Goussarov and M. Polyak, Calculus of clovers and finite type
invariants of 3-manifolds, Geom. Topol. 5 (2001) 75–108.

[6] M. Goussarov, M. Polyak and O. Viro, Finite-type invariants of classical and virtual
knots, Topology 39(5) (2000) 1045–1068; arXiv:math/9810073v2 [math.GT].

[7] J. Johannes, A type 2 polynomial invariant of links derived from the Casson–Walker
invariant, J. Knot Theory Ramifications 8 (1999) 491–504.

[8] J. Johannes, The Casson–Walker-Lescop invariant and link invariants, J. Knot The-
ory Ramifications 14(4) (2005) 425–433.

[9] R. Kirk and C. Livingston, Vassiliev invariants of two component links and the
Casson–Walker invariant, Topology 36 (1997) 1333–1353.

[10] C. Lescop, Global Surgery Formula for Casson–Walker Invariant, Annals of Mathe-
matics Studies, Vol. 140 (Princenton University Press, Princenton, 1996).

[11] C. Livingston, Enhanced linking numbers, Amer. Math. Monthly 110 (2003) 361–385.
[12] S. Matveev, Generalized surgery of 3-manifolds and representations of homology

spheres, Mat. Zametki 42 (1987) 268–278; English transl. Math. Notices Acad. Sci.
USSR 42(2) (1987) 651–656.

[13] S. Melikhov, Colored finite type invariants and a multi-variable analogue of the Con-
way polynomial, preprint (2003), math.GT/0312007.

[14] Y. Nakanishi and Y. Ohyama, Delta link homotopy for two component links, III, J.
Math. Soc. Japan 55(3) (2003) 641–654.

[15] M. Polyak, On the algebra of arrow diagrams, Lett. Math. Phys. 51(4) (2000) 275–
291.

[16] M. Polyak and O. Viro, On the Casson knot invariant, Knots in Hellas ’98, Vol. 3
(Delphi), J. Knot Theory Ramifications 10(5) (2001) 711–738.

[17] M. Polyak and O. Viro, Gauss diagram formulas for Vassiliev invariants, Int. Math.
Res. Notices (1994), no. 11, 445ff., approx. 8 pp. (in electronic).

[18] N. Saveliev, Lectures on the Topology of 3-Manifolds. An Introduction to the Casson
Invariant (Walter de Gruyter, 1999).

[19] N. Saveliev, Invariants for Homology 3-Spheres (Springer, 2003).
[20] D. Rolfsen, Knots and Links, Mathematics Lecture Series, Vol. 7 (Publish of Perish,

Houston, 1976).
[21] K. Walker, An Extension of Casson’s Invariant, Annals of Mathematics Studies,

Vol. 126 (Princeton University Press, Princeton, 1992).


