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Abstract. We consider an algebra of (classical or virtual) tangles over an
ordered circuit operad and introduce Conway-type invariants of tangles which
respect this algebraic structure. The resulting invariants contain both the

coefficients of the Conway polynomial and the Milnor’s µ-invariants of string
links as partial cases. The extension of the Conway polynomial to virtual
tangles satisfies the usual Conway skein relation and its coefficients are GPV
finite type invariants. As a by-product, we also obtain a simple representation

of the braid group which gives the Conway polynomial as a certain twisted
trace.

1. Introduction

The Alexander polynomial ∆L(t) ∈ Z[t, t−1] of a link L in R3 is one the most
celebrated and well-studied link invariants. A number of different definitions and
approaches to ∆L(t) are known (see e.g. [21, 24]) and it is related to a variety of
interesting objects and constructions. The Alexander polynomial has reappeared
time and again in all major developments in knot theory of the last decades: quan-
tum invariants, finite type invariants, and, lately, the theory of knot Floer homology
(see e.g. [17]).

In its original form, ∆L(t) is only defined up to multiplication by powers of
t. Its close relative, the Conway polynomial ∇(L) =

∑
n cn(L)z

n ∈ Z[z], is free
of this indeterminacy. The Conway polynomial may be obtained from ∆L(t) by

a substitution z = t
1
2 − t−

1
2 and is completely determined by its normalization

∇(O) = 1 on the unknot O and the Conway skein relation

∇(L+)−∇(L−) = ∇(L0),

for any triple L+, L− and L0 of link diagrams, which look as shown in Figure 1 in
a certain disk B and coincide outside this disk.

L + L − L 0

Figure 1. Conway skein triple

The importance of the Conway skein relation was realized after the appearance
of the Jones polynomial, and led to the discovery of the HOMFLY polynomial [7].

2010 Mathematics Subject Classification. 57M25; 57M27.

Key words and phrases. tangles, virtual links, Gauss diagrams, Conway polynomial.
Partially supported by the ISF grant 1343/10.

1



2 MICHAEL POLYAK

The Alexander-Conway polynomial reappeared in the theory of quantum invari-
ants (where it turned out to be related to the quantum supergroup Uq(gl(1|1)),
and also to Uq(sl(2)) at roots of unity), and later in the theory of Vassiliev knot
invariants, since all coefficients of ∇(L) are finite type invariants (see [2]), with
cn(L) being an invariant of degree n.

Separate coefficients cn(L) of the Conway polynomial also attracted a lot of at-
tention, with coefficients of low degrees been extensively studied. E.g., for knots,
c2(L) is the Casson knot invariant. For 2-component links c1(L) is the linking num-
ber of two components, and c3(L) is the Sato-Levine invariant. For algebraically
split 3-component links c2(L) is Milnor’s triple linking number. More generally,
the first non-vanishing coefficient of ∇(L) for n-component links is a certain com-
bination of linking numbers [8]; for algebraically split links the first non-vanishing
coefficient is a certain combination of Milnor triple linking numbers [13, 14, 23].
Coefficients cm(L) of a link L are related to those of a knot obtained by “banding
together” components of L (see [13]).

After the development of the theory of virtual knots (see [11]), a number of
attempts was made to extend the definition of the Alexander or the Conway poly-
nomial to the virtual case using one of the original approaches for classical links.
In particular, J. Sawollek [22] constructed a polynomial which, however, vanishes
on classical links. One of the possible paths to pursue is that of the quantum in-
variants, or Fox differential calculus. This allows one to generalize the Alexander
polynomial to (virtual or classical) tangles, but results in polynomials which are
not invariant under the first Reidemeister move and do not satisfy the skein relation
(e.g., a recent construction of Archibald and Bar-Natan [1]). We are unaware of
any generalizations of the Alexander-Conway polynomial to virtual links or tangles,
which would coincide with the original polynomial on classical links and satisfy the
skein relation.

With this goal in mind, we follow the approach of Chmutov, Khouri and Rossi
[3], who use a tautological state sum model of Jaeger [9] to deduce Gauss dia-
gram formulas for the coefficients cn(L) of ∇(L). We extend and modify their
construction to ordered tangles and provide a direct proof of the invariance under
the Reidemeister moves. This enables us to extend the coefficients cn(L) to the
virtual case as well. The resulting invariants are of finite type in the GPV sense [5]
(and thus change under Kauffman’s virtualization move [11]).

We consider ordered tangles as an algebra over an ordered circuit operad. Our
Conway-type invariants of tangles respect this algebraic structure. This allows us
to “break” any complicated tangle into elementary fragments, so all proofs and
calculations may be done for elementary tangles. The resulting invariants contain
the coefficients of the Conway polynomial of (long) links as a partial case. For
string links we use a certain shifted ordering to obtain Milnor’s triple and quadruple
linking numbers. We conjecture that all Milnor’s homotopy µ-invariants of string
links may be obtained in this way. As a by-product, we also obtain a simple
representation of the braid group, which gives the Conway polynomial as a certain
twisted trace. Due to the Conway skein relation, this representation factors through
the Hecke algebra.

The paper is organized in the following way. In Section 2 we review classical and
virtual ordered tangles. Section 3 is dedicated to the ordered circuit operad and
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its relation to ordered tangles. In Section 4 we introduce Conway-type invariants
of tangles and then discuss their properties in Section 5.

2. Preliminaries

2.1. Classical and virtual tangles. Let B3 be the unit 3-dimensional ball in
R3. An n-tangle in B3 is a collection S of n disjoint oriented intervals and some
number of circles, properly embedded in B3 in such a way, that the endpoints of
each interval belong to the set X = {xk}2nk=1, where xk are some prescribed points
on the boundary of B3. For example, one may choose points xk on the great circle
z = 0, say, xk = (exp(kπi/2n), 0) for odd k and xk = (exp(−(k − 1)πi/2n), 0) for
even k.

Tangles are considered up to an oriented isotopy in B3, fixed on the boundary.
We will call embedded intervals and circles the strings and the closed components
of a tangle, respectively. We will always assume that the only singularities of
the projection of a tangle to the xy-plane are transversal double points. Such a
projection, enhanced by an indication of an over/underpass in each double point,
is called a tangle diagram. For technical reasons we will also often fix a base point
(distinct from the endpoints of strings) on the boundary circle of the diagram. See
Figure 2a.

a b c

Figure 2. Classical and virtual tangle diagrams

Tangles generalize many objects, commonly considered in knot theory. In par-
ticular, tangles which have no strings are usual links in B. Tangles with one string
and no closed components are long knots, see Figure 2b. Pure tangles without
closed components are called string links. Here a tangle is pure, if the endpoints
of k-th string, k = 1, 2, . . . , n are x2k−1 and x2k. A particular example of a pure
tangle is the unit tangle, with every pair x2k−1 and x2k connected by an interval.
Braids are tangles such that each tangle component intersects every plane y = c,
c ∈ [0, 1] in at most one point.

Virtual tangles present a useful generalization of tangles in the framework of
the virtual knot theory [11]. In addition to usual crossings of a tangle diagram,
one considers a new – virtual – type of crossings. We will draw virtual crossings
as double points without any indication of the over- or underpass, see Figure 2c.
Virtual tangle diagrams are considered up to the classical Reidemeister moves (see
Figure 3) together with an additional set of virtual moves, shown in Figure 4.

Throughout the paper we will assume that all strings and closed components are
oriented. Also, further we will consider only tangles with at least one string. To
obtain invariants of closed classical links, we will pick one of the components, cut
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Ω1 Ω2 Ω3

Figure 3. Classical Reidemeister moves

Figure 4. Virtual Reidemeister moves

it open, and consider the resulting tangle with one string. We will then argue that
the result does not depend on the choice. All our constructions will work both for
classical and for virtual tangles.

2.2. Ordered tangles. Let T be a tangle with n strings. Since we assume that
all strings are oriented, we can distinguish two endpoints of a string: its input
(or source), and its output (or target). Denote by ∂−T and ∂+T sets of inputs
and outputs of all strings of T , respectively. A tangle T is ordered, if the set
X = ∪2n

i=1xi = ∂−T ∪ ∂+T is numbered by a collection {j1 < j2 < · · · < j2n} of
integers, so that each input is numbered by j2k−1, and each output is numbered by
j2k for some k = 1, 2 . . . , n. See Figure 5.
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Figure 5. Coherent and non-coherent tangle orderings

Orderings by different sets of integers which are related by a monotone map will
be considered equivalent. Note that closed components do not appear in the defi-
nition of an ordering. Thus ordered closed links are usual links with no additional
data, and 1-string tangles (in particular, long knots) have a unique ordering. We
will call an ordering of a tangle T coherent, if for every k = 1, 2, . . . , n a string with
the input numbered by j2k−1 has its output ordered by j2k, see Figure 5a. For pure
tangles (in particular string links) the standard ordering, such that xk is labeled
by k, is coherent.

3. Circuit operad and tangles

3.1. Circuit diagrams. A circuit operad [1] is a modification of a planar tangles
operad [10], adjusted for virtual tangles instead of classical tangles. It may be
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useful to look at Figure 6 for some examples of circuit diagrams before reading the
formal definition below.

Figure 6. “Trace”, “composition”, and general circuit diagrams

An n-circuit diagram C, n > 0, is the unit disk D0 in R2 with a (possibly empty)
collection of disjoint subdisks D1, D2, . . . , Dk in the interior of D0. The boundary
∂D0 of the disk D0 is called the output of C, and the union of boundaries ∂Di of Di,
i = 1, 2, . . . , k is the input of C. Each disk Di has an even number 2ni of distinct
marked points on its boundary (with n = n0). Each boundary circle ∂Di, i =
0, 1, . . . , k is based, i.e., equipped with a base point distinct from the marked points;
we will denote it by ∗i. The set of all marked points is equipped with a matching,
i.e., is split inN = n0+n1+· · ·+nk disjoint pairs. A pair is called external, if at least
one of its points lie on the output D0, and is internal otherwise. It is convenient
to think about each pair as a simple path in the complement D r ∪k

i=1Dk of the
internal disks, connecting the corresponding marked points. These connections
represent only the matching of marked points, but not the actual path. Actual
paths, as well as their intersections, are irrelevant, so we will treat these intersections
as virtual crossings. Circuit diagrams are considered up to orientation-preserving
diffeomorphisms. If paths in a circuit diagram may be realized without intersections
in D r ∪k

i=1Dk, we recover planar tangle diagrams of [10].
Two circuit diagrams C and C ′ with the appropriate number of boundary points

may be composed into a new circuit diagram C ◦i C ′ as follows. Isotope C ′ so that
the output ∂D′

0 of C ′, together with the set of marked points and the base point,
coincides with the input Di of C. Glue C ′ into the internal disk Di of C (smoothing
near the marked points so that the paths of C and C ′ meet smoothly) and remove
the common boundary. See Figure 7. This composition defines a structure of a
colored operad on circuit diagrams.

CCCC

Bi

i

Figure 7. Composing circuits
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Further we will consider ordered oriented circuits. A circuit diagram is oriented,
if all paths connecting pairs of marked points are oriented. In other words, each
matched pair e of marked points is ordered: (s(e), t(e)) – the source and the target of
e, respectively. The number of inputs and outputs on each circle ∂Di are required
to be equal (and thus equal to ni). See Figures 6, 7. Compositions of oriented
tangles should respect orientations of the paths.

3.2. Ordered circuit diagrams. An oriented circuit is ordered, if the set of
paths is ordered, i.e., the set of all pairs of matched marked points is ordered:
(s1, t1), . . . , (sN , tN ). We assume that two following conditions hold. Firstly, points
s1 and tN should be on the output ∂D0 of C. Secondly, both points ti, si+1,
i = 1, 2, . . . , N − 1 should be on the boundary of the same disk of C. See the
rightmost picture of Figure 8.

An ordering of all external paths in C is called an external ordering, and an order-
ing of all internal paths in C is called an internal ordering of C. Given a (complete)
ordering of C, its restriction to external and internal paths defines an external and
an internal orderings of C, respectively. Vice versa, given both an internal and
an external ordering of C, one may construct different complete orderings of C as
shuffles of these two partial orderings, see Figure 8.
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Figure 8. External, internal, and complete orderings of a circuit

To define a composition C ◦i C ′ of ordered circuits C and C ′, we require the
following compatibility of orderings. A circuit of length l in a circuit diagram C is
a sequence (sj , tj), . . . , (sj+l, tj+l) of paths, such that both endpoints sj and tj+l

lie on the output ∂D0, while the rest of the endpoints in this sequence lie on the
inputs ∪k

i=1∂Di. For example, an ordered circuit diagram in Figure 8 contains
three circuits of lengths 2, 3, and 4, respectively. If a sequential pair ti and si+1

of marked points on ∂Di are identified with a pair s′j and t′j+l of marked points on

∂D′
0, then we require that s′j and t′j+l are endpoints of a circuit in C ′. The ordering

on C ◦ C ′ is then induced from orderings on C and C ′.

3.3. Inserting tangles in circuit diagrams. Given an n-circuit diagram C with
k inputs and a k-tuple of tangles T1, . . . , Tk, we may create a new tangle C(T1, . . . , Tk)
if the data on the boundaries match. Isotope an ni tangle Ti to such a position,
that its boundary circle coincides with the input circle ∂Di of C and the endpoints
of strings in Ti coincide with the marked points on ∂Di (if C and Ti are oriented,
we also require a match of orientations). Glue Ti into the internal disk Di of C
along the boundary, removing common boundary circles and thinking about paths
in the complement Dr∪k

i=1Dk as a virtual tangle diagram. Doing this for all disks
Di, we obtain a new virtual n0-tangle C(T1, . . . , Tk) in the disk D0. See Figure 9.
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Figure 9. Inserting tangles in a circuit

Note that in order to define an ordering of the resulting tangle C(T1, . . . , Tk), we
need to fix only an external orientation on C; Ti’s need not to be ordered. Moreover,
if C has a (complete) ordering, it induces an ordering on each tangle Ti. Indeed, an
ordering of C defines a numbering i1, o1, . . . , iN , oN of the set of all marked points,
which induces an ordering of marked points on the boundary circle ∂Di, and thus
an ordering of Ti. If all Ti’s and C are ordered, for the composition to be defined
we require that this induced ordering should coincide with that of Ti. See Figure
9.

This operation gives to virtual tangles a structure of an algebra over the circuit
operad, similar to the usual case of classical tangles as an algebra over the planar
operad.

4. Invariants of ordered tangles

4.1. States of tangle diagrams. Let D be an ordered tangle diagram. An n-
state of D is a collection of n crossings of D. A state S of D defines a new tangle
diagram D(S), obtained from D by smoothing all crossings of S respecting the
orientation, see Figure 10a. The smoothed diagram inherits an ordering from D.
We will say that the state S is coherent, if D(S) contains no closed components
and the ordering of D(S) is coherent (see Section 2.2), i.e. if both ends of each
string numbered by j2i−1 and j2i for some i. Suppose that S is coherent. As we
follow D(S) along the first string of D(S) (starting from its input and ending in its
output), then continue to the second string of D(S) in the same fashion, etc., we
pass a neighborhood of each smoothed crossing s ∈ S twice. A (coherent) state S
is descending, if we enter this neighborhood first time on the (former) overpass of
D, and the second – on the underpass. See Figure 10b. The sign sign(S) of S is
defined as the product of signs (local writhe numbers) of all crossings in S.

Remark 4.1. Property of coherency of a state depends on the ordering of a diagram
D. Given a state S such that D(S) contains no closed components, there are n!
orderings of D (which differ by reorderings of the n strings of D(S)) for which
S is coherent. To estimate the number of orderings for which such a state S is
descending, construct a graph with vertices corresponding to components (both
open and closed) of D, with two vertices connected by an edge if S contains a
crossing between two corresponding components of D. If the number of connected
components of this graph is c, there are at most c! orderings of D for which S
may be descending. In particular, if the graph is connected, there is at most one
ordering for which S may be descending.
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Figure 10. Smoothing crossings which give a descending state

4.2. Conway-type invariants of ordered tangles. Denote by Sn(D) the set of
all descending n-states of a diagram D. Define cn(D) ∈ Z and ∇(D) ∈ Z[z] by

cn(D) =
∑

S∈Sn(D)

sign(S) , ∇(D) =

∞∑
n=0

cn(D)zn

In particular, c0(D) = 1 if D has no closed components and the ordering of D is
coherent (indeed, in this case the empty state S = ∅ is descending), and c0(D) = 0
otherwise.

Example 4.2. For a trivial tangle diagramD0 which consists of one straight string,
the only descending state is trivial, thus ∇(D0) = 1. Also, an addition of a kink to
a string of a tangle does not change the value of ∇ (since the new crossing cannot
enter a coherent state). In particular, for a diagram D′

0 obtained from D0 by an
addition of a small kink, we have ∇(D′

0) = 1. If a tangle diagram Dsplit is split –
i.e., it can be subdivided into two non-empty non-intersecting parts – then there
are no coherent (and thus no descending) states, thus ∇(Dsplit) = 0.

Example 4.3. Let Da, Db, Dc and Dd be the diagrams shown in Figure 11. The
only descending states for Da and Db are trivial, so ∇(Da) = ∇(Db) = 1. For Dc

there are no descending states, so ∇(Dc) = 0. For Dd there are two descending
1-states, but their signs are opposite, so ∇(Dd) = z − z = 0.

4 2

3 1
Da

2 4

1 3
Db

3 1

2 4

Dc Dd

4 2

1 3

Figure 11. Tangle diagrams with two strings

Example 4.4. For a diagram D1 of a long Hopf link in Figure 12a there is only one
descending state {2} ∈ S1(D1). Thus ∇(D1) = ±z (depending on the orientation
of the closed component). For the diagram D2 of a long trefoil in Figure 12b
there is only one non-trivial descending state {2, 3} ∈ S2(D2), so ∇(D) = 1 + z2.
For the diagram D3 of a long iterated Hopf link in Figure 12c, there are three
non-trivial descending states: {2}, {4} ∈ S1(D), and {2, 3, 4} ∈ S3(D). Thus
∇(D3) = ±(2z + z3) (depending on the orientation of the closed component).
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Figure 12. More tangle diagrams

Let C be on oriented circuit diagram with an external ordering. Let T1,. . . ,Tk be
oriented tangles such that the composition C(T1, . . . , Tk) is defined. Note that the
external ordering of C makes C(T1, . . . , Tk) into an ordered tangle. Now, suppose
that a (complete) ordering or of C extends the given external ordering. As discussed
in Section 3.3, or induces an ordering on each tangle Ti; denote the resulting ordered
tangle by T or

i . Directly from the definition of cn we conclude that ∇ behaves
multiplicatively under tangle compositions:

Lemma 4.5. We have

∇(C(T1, . . . , Tk)) =
∑
or

k∏
k=1

∇(T or
i ) ,

where the summation is over all orderings or of C, extending the initial external
ordering.

Theorem 4.6. Let D be a diagram of an ordered (classical or virtual) tangle T .
Then ∇(T ) = ∇(D) defines an invariant of ordered tangles.

Proof. Let us prove the claim by checking the invariance of cn(D) under the Rei-
demeister moves Ω1− Ω3. The results of [19] imply that all oriented Reidemeister
moves are generated by 4 moves shown in Figure 13 below.

Ω1a Ω1b Ω2a

Ω3a

Figure 13. Elementary tangles related by Reidemeister moves

Due to Lemma 4.5, it suffices to verify the claim only on pairs of elementary
tangle diagrams of Figure 13 for different orderings. Indeed, a pair of ordered
tangles which are related by an oriented Reidemeister move in a certain disk B
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can be presented as compositions C(T1, T2) and C(T ′
1, T2) with T1 and T ′

1 being
elementary tangle diagrams inside the disk B, and T2 being a tangle in a disk
surrounding all other classical crossings, as illustrated in Figure 14.

B

C T2

T1

Figure 14. Decomposing tangles into pieces

If a pair of ordered diagrams differ by Ω1, the equality ∇(T1) = ∇(T ′
1) follows

from Example 4.2. A similar equality for Ω2 follows from Example 4.3.
Finally, if T and T ′ are two ordered tangle diagrams related by Ω3, there is an

obvious bijective correspondence between all descending 0- and 1-states of T and
T ′; also, there are no descending 3-states. This implies the required equality for
every ordering for which there are no descending 2-states of T and T ′. But if for
a certain ordering such states exist, they appear in pairs with opposite signs, and
thus cancel out, see Figure 15.
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sign(S)=+1 sign(S)=−1
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sign(S)=+1 sign(S)=−1

1

5 2

6

43

1

5 2

6

43

sign(S)=+1 sign(S)=−1

Figure 15. Canceling pairs of descending states

�

5. Properties of the invariants

5.1. Skein relation. Our choice of notation ∇ for the invariant of Theorem 4.6 is
explained in the following proposition:

Proposition 5.1. Let T+, T− and T0 be ordered tangles which look as shown in
Figure 16a inside a disk and coincide (including orderings) outside this disk. Then
the Conway skein relation holds:

∇(T+)−∇(T−) = z∇(T0)
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Figure 16. Skein relation for tangles

Proof. Due to the multiplicativity property of Lemma 4.5, it suffices to establish the
equality for the three tangles of Figure 16a equipped with one of the four possible
orderings shown in Figure 16b, with (i, j, k, l) being (1, 3, 2, 4), (1, 3, 4, 2), (3, 1, 2, 4),
or (3, 1, 4, 2). The corresponding values of ∇ are shown in the table below.

(ijkl) (1324) (1342) (3124) (3142)

∇(T+) 1 z 0 1

∇(T−) 1 0 −z 1

∇(T0) 0 1 1 0

�

The above proposition, together with the normalization of Example 4.2 on split
tangles and on the trivial 1-string tangle, imply the following corollary:

Corollary 5.2 (c.f. [3]). Let T be a classical tangle with one string1 and m − 1
closed components. Denote by T̄ a closed m-component link, obtained from T by
the braid-type closure. Then ∇(T ) is the Conway polynomial of T̄ .

5.2. Relation to Milnor’s µ-invariants. For n > 1 invariants cn(T ) include
well-known Milnor’s µ-invariants of link-homotopy [16] and their generalizations.
In particular, let T be a tangle with n ordered strings and no closed components.
Denote by Tσ the tangle T equipped with an ordering which is obtained from the
standard one by a cyclic permutation σ = (246 . . . 2n), i.e. such that the source
and the target of the k-th string are numbered by j2k−1 and j2k+2, respectively, for
k = 1, . . . , n− 1, and the source and the target of the last string are numbered by
j2n−1 and j2. See Figure 17. Denote ν12...n(T ) = cn−1(T

σ).

4 1

3

6 5

2

n2  −1

T2

10
7

2

4
18

5

6 3

n2  −1

T1

2

4
18

5

6 3

10
7

C
move

n

a b

Figure 17. Tangles with a shifted ordering

1Recall that for a tangle with one string there is only one possible ordering.
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The invariant ν12...n detects Goussarov-Habiro’s Cn move [4, 6]: an easy calcula-
tion shows that for tangles T1 and T2 depicted in Figure 17b we have ν12...n(T1) = 0,
ν12...n(T2) = 1.

Conjecture 5.3. Modulo lower degree invariants, ν12...n coincide with Milnor’s link
homotopy µ-invariant2 µ2...n,1. In particular, if a closure T̂ is a Brunnian link, so

that n-th degree µ̄-invariants of T̂ are well-defined, we have ν12...n(T ) = µ̄12...n(T̂ ).

Currently, the general structure of the lower degrees correction terms remains
unclear. Here are some explicit formulas for low degree invariants, which directly
follow from the results of [12, 18] (after a straightforward translation of formulas
for ν123(T ) and ν1234(T ) to the language of Gauss diagrams):

Proposition 5.4. Let T be a (possibly virtual) string link. Then

ν12(T ) = µ2,1(T ) = lk21(T ) , ν123(T ) = µ23,1(T ) + lk13(T ) lk32(T )

ν1234(T ) = µ234,1(T ) + µ34,1(T ) lk32(T ) + µ24,1(T ) lk43(T ) + µ23,4(T ) lk14(T )+

lk14(T ) lk 43(T ) lk32(T )

Cases when k ≥ n are no less interesting. Here are some results for small values
of n and k. Denote by V2(T ) an invariant of 2-component string links introduced
in [15], and let v2 be the Casson knot invariant, i.e. the second coefficient of the
Conway polynomial.

Proposition 5.5. For a 2-string link T with a standard ordering we have c2(T ) =
V2(T ). This invariant is a splitting of the Casson knot invariant v2, in the following
sense. For a long knot K, denote by K2 = K ∪ K ′ a 2-string link obtained from
K by a “reverse doubling”, i.e. by taking a pushed-off copy K ′ of K along a zero
framing, and then reversing its orientation. Then v2(K) = − 1

2V2(K
2).

Proof. The equality c2(T ) = V2(T ) follows from equation 3.5 of [15]. Moreover,
equation 2.2 of [15] implies that for any 2-string link T with strings T1 and T2 one
has V2(T ) = v2(T̄pl)− v2(T1)− v2(T2), where T̄pl is a plat closure of T . Apply this

equality to T = K2 and note that the plat closure K̄2
pl of K

2 is the unknot, thus
V2(K

2) = −v2(K)− v2(K
′). Also, v2 is preserved under an orientation reversal, so

V2(K
2) = −2v2(K). �

5.3. GPV finite type invariants. Finally, let us show that all invariants cn(T )
are finite type invariants of virtual tangles in the sense of GPV [5]. Recall, that for
virtual links there are two different theories of finite type invariants. Kauffman’s
theory of [11] is based on crossing changes similarly to the case of classical knots.
GPV theory introduced in [5] is more restrictive in a sense that every GPV invariant
is also a Kauffman invariant, but not vice versa. In GPV theory instead of crossing
changes one uses a new operation, special for the virtual knot theory: crossing
virtualization. Namely, given a real crossing in a diagram of a virtual link, we can
convert it into a virtual crossing (resulting in a new virtual diagram).

Let D be a virtual tangle diagram with n marked and ordered real crossings di,
i = 1, . . . , n. Given an n-tuple I = {i1, . . . , in} ∈ {0, 1}n of zeros and ones, denote
by DI a virtual tangle diagram obtained from D by virtualization of all crossings
dk with ik = 1. Also, let |I| =

∑n
k=1 ik. An invariant v of virtual tangles is called a

2or rather, its generalization of [12] to (classical or virtual) tangles
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GPV finite type invariant of degree less than n, if an alternating sum of its values
on all diagrams DI vanishes: ∑

I∈{0,1}n

(−1)|I|v(DI) = 0

for all diagrams D and choices of crossings di. If v is of degree less than n + 1,
but not less than n, we say that v is a GPV invariant of degree n. A restriction to
classical tangles of a GPV invariant of degree n is a Vassiliev invariant of degree
less than n.

Remark 5.6. An open (an highly non-trivial) conjecture is whether for long knots
the opposite is true, i.e., whether any Vassiliev invariant of classical long knots can
be extended to a GPV invariant. A positive solution would imply that Vassiliev
invariants classify knots.

Proposition 5.7. For any n ∈ N, the invariant cn(T ) is a GPV invariant of degree
n.

Proof. In [5] it is shown that any invariant given by an arrow formula, where all
arrow diagrams contain at most n arrows, is a GPV invariant of degree at most n.
A straightforward translation of this statement into the language of state sums of
Sections 4.1-4.2 implies that any invariant defined by a state sum, where the states
contain at most n crossings, is of degree at most n. �

5.4. Conway-type representation of a braid group. If we restrict ourselves
to braids instead of all n-tangles, we can apply results of the previous section to
obtain a following representation of the braid group Bn on n strands.

Let Rn = ZSn[z] be polynomials in one variable z with coefficients in the group
ring ZSn of the symmetric group Sn. Denote by σi and si, i = 1, . . . , n − 1 the
standard generators of Bn and Sn respectively.

Proposition 5.8. For s ∈ Sn, define

σ̂i(s) =

{
sis if s(i) < s(i+ 1)

sis+ sz if s(i) > s(i+ 1) ,
σ̂−1
i (s) =

{
sis if s(i) > s(i+ 1)

sis− sz if s(i) < s(i+ 1) ,

Set σ̂i(sz
k) = σ̂i(s)z

k and extend it to Rn by linearity. This assignment defines an
action of the braid group Bn on Rn. This representation satisfies σ̂i(s)− σ̂−1

i (s) =
zs, thus factors through the Hecke algebra.

Proof. Use s ∈ Sn to order inputs of all strings on the top of an elementary tangle
σi by 2s1 − 1, 2s2 − 1, . . . , 2sn − 1. The only two orderings of the outputs of σi

for which there exist a descending state are 2s1, . . . , 2si−1, 2si+1, 2si, . . . , 2sn (for
which the trivial state is descending) and 2s1, . . . , 2si−1, 2si, 2si+1, . . . , 2sn sis (for
which 1-state which consists of the only crossing of σi) is descending. See Figure
18. This immediately leads to the expression for σ̂i(s). The expression for σ̂−1

i (s)
is obtained in the same way. �

It would be interesting to identify this representation with (a quotient of) a
known representation of the braid group.

The above representation may be used to recover the Conway polynomial as

follows. For s ∈ Sn and β ∈ Bn, denote by β̂[k](s) the coefficient of zk in β̂(s);
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2ni2  +2 i2

2  −1i i2  +1 2  −1n

2 4

1 3 2  −1i i2  +1 2  −1n

i2  +2 2ni2

1 3

2 4

Figure 18. Two possible orderings of an elementary tangle

this defines a linear operator on ZSn. Composing it with a shift τ(i) = i + 1,
i = 1, . . . , n− 1 , τ(n) = 1 and taking the trace tr in ZSn, we define

ck(β) = tr(τ · β̂[k])

Proposition 5.9. Let L be a link, obtained as a closure of a braid β. Then ck(β)
is the coefficient of zk in the Conway-Alexander polynomial ∇(L) of L.

Proof. Follows from Corollary 5.2. �

References

[1] J. Archibald, D. Bar-Natan, Circuit algebras and the Alexander polynomial for tangles, in

preparation.
[2] J. Birman, X.-S. Lin, Birman, Knot Polynomials and Vassiliev’s Invariants, Invent. Math.

111 (1993), 225–270.
[3] S. Chmutov, M. Khoury, A. Rossi, Polyak-Viro formulas for coefficients of the Conway

polynomial, J. Knot Theory and Ramif. 18 (2009), 773–783.
[4] M. N. Goussarov, Variations of knotted graphs. The geometric technique of n-equivalence

(Russian), Algebra i Analiz 12 (2000) 79–125; engl. translation in St. Petersburg Math. J.
12 (2001) 569–604.

[5] M. Goussarov, M. Polyak, O. Viro, Finite type invariants of virtual and classical knots,
Topology 39 (2000), 1045–1068.

[6] K. Habiro, Master’s thesis, University of Tokyo, 1994.
[7] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, A new polynomial

invariant of knots and links, Bull. AMS 12 (1985) 239–246.
[8] J. Hoste, The first coefficient of the Conway polynomial, Proc. AMS, 95 (1985), 299302.
[9] F. Jaeger, A combinatorial model for the HOMFLY polynomial, European J. Combinatorics

11 (1990), 549558.
[10] V.F.R. Jones, Planar algebras I, New Zealand J. Math., to appear, arXiv.math.QA/9909027.
[11] L. Kaufmann, Virtual knot theory, European J. Combin. 20 (1999), no. 7, 663–690.
[12] O. Kravchenko M. Polyak, Milnor’s invariants and diassociative algebras, Lett. Math.

Physics, to appear; preprint arxiv:1011.0117.
[13] J. Levine, A factorization of the Conway polynomial, Comment. Math. Helv. 74 (1999),

2753.
[14] G. Masbaum, A. Vaintrob, Milnor numbers, spanning trees, and the Alexander-Conway

polynomial, Adv. Math, 180 (2003), 765–797.
[15] J.-B. Meilhan, On Vassiliev invariants of order two for string links, J. Knot Theory and

Ramif. 14 (2005), 665–687.
[16] J. Milnor, Link groups, Annals of Math. 59 (1954), 177–195; Isotopy of links, Algebraic

geometry and topology, A symposium in honor of S.Lefshetz, Princeton Univ. Press (1957).
[17] P. Ozsvath, Z. Szabo, Holomorphic disks and knot invariants, Adv. Math, 186 (2004),

58–116.
[18] M. Polyak, Skein relations for Milnor’s µ-invariants Alg. Geom. Topology 5 (2005), 1471–

1479.
[19] M. Polyak, Minimal generating sets of Reidemeister moves, Quantum Topology, 1 (2010),

399–411

[20] M. Polyak, O. Viro, Gauss diagram formulas for Vassiliev invariants, Int. Math. Res. No-
tices 11 (1994), 445–454.



ALEXANDER-CONWAY INVARIANTS OF TANGLES 15

[21] D. Rolfsen, Knots and Links (2nd ed.), Berkeley, CA: Publish or Perish (1990).

[22] J. Sawollek, On Alexander-Conway polynomials for virtual knots and links, J. Knot Theory
and Ramif. 12 (2002), 767–779.

[23] L. Traldi, Conways potential function and its Taylor series, Kobe J.Math. 5 (1988), 233–264.
[24] V. Turaev, Reidemeister torsion in knot theory, Russian Math. Surveys, 41:1 (1986), 119–

182.

Department of mathematics, Technion, Haifa 32000, Israel
E-mail address: polyak@math.technion.ac.il


