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Abstract. We study the following question: given a set P of 3d−2 points
and an immersed curve Γ in the real plane R2, all in general position, how
many real rational plane curves of degree d pass through these points and
are tangent to this curve. We count each such curve with a certain sign,
and present an explicit formula for their algebraic number. This number
is preserved under small regular homotopies of a pair (P,Γ) but jumps
(in a well-controlled way) when in the process of homotopy we pass a
certain singular discriminant. We discuss the relation of such enumerative
problems with finite type invariants. Our approach is based on maps of
configuration spaces and the intersection theory in the spirit of classical
algebraic topology.

1. Introduction

1.1. History. A classical problem in enumerative geometry is the study of
the number of certain algebraic curves of degree d passing through some
number of points in the affine or projective plane. This question is not very
interesting if we consider all curves of degree d, due to the fact that the
set of such curves forms the projective space of dimension 1

2
d(d + 3), so the

question of passing through points is simply a question of solving a system
of linear equations. Thus, one usually asks this question about some families
of algebraic curves of degree d, e.g., curves of a fixed genus g. In particular,
there is an old question of determining the number Nd (resp. Nd(R)) of
rational, i.e. genus g = 0, curves of degree d passing through 3d − 1 points
in general position in CP2 (resp. RP2). Here 3d − 1 is complex (resp. real)
dimension of an algebraic variety of irreducible rational curves of degree d in
CP2 (resp. RP2).

The numbers N1 = N2 = N1(R) = N2(R) = 1 go back to antiquity;
N3 = 12 was computed by J. Steiner in 1848. The late 19-th century was
the golden era for enumerative geometry, and H.G. Zeuthen in 1873 could
compute the number N4 = 620. By then, the art of resolving enumerative
problems had attained a very high degree of sophistication and, in fact, its
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foundations could no longer support it. Hilbert asked for rigorous foundation
of enumerative geometry, including it as the 15-th problem in his list.

The 20-th century witnessed great advances in intersection theory. In
the seventies and eighties, a lot of old enumerative problems were solved
and many classical results were verified. However, the specific question of
determining the numbers Nd turned out to be very difficult. In fact, in the
eighties only one more of the numbers was unveiled: the number of quintics
N5 = 87304.

The revolution took place around 1994 when a connection between theo-
retical physics (string theory) and enumerative geometry was discovered. As
a corollary, M. Kontsevich and Yu. Manin in [12] (see also [6]) gave a solution
in terms of a recursive formula

Nd =
∑

d1+d2=d, d1,d2>0

Nd1Nd2

(
d21d

2
2

(
3d− 4

3d1 − 2

)
− d31d2

(
3d− 4

3d1 − 1

))
.

But all these advances were done in the complex algebraic geometry. In
the real case the situation is different. Until 2000 nothing was known about
Nd(R) for d ≥ 3. In 2000 A. Degtyarev and V. Kharlamov [5] showed that
N3(R) may be 8, 10 or 12, depending on the configuration of 8 = 3·3−1 points
in RP2. This result reflects a general problem of a real enumerative geometry:
such numbers are usually not constant, but do depend on a configuration
of geometrical objects. A natural way to overcome this difficulty is to try
to assign some signs and multiplicities to objects in question so that the
corresponding algebraic numbers remain constant. Already in the work of
Degtyarev-Kharlamov one can see that one can assign certain multiplicities
(signs) to real cubics passing through a given 8 points, so that the weighted
sum of these cubics is independent on the configuration of points. In 2003 J.-
Y. Welschinger [17] found a way to assign signs to real rational curves of any
degree. Welschinger’s sign wC of a real rational curve C is defined as wC =
(−1)m(C), wherem(C) is the number of solitary points of C (called the mass of
C). Welschinger’s main theorem states that the corresponding weighted sum
Wd =

∑
C wC of all curves passing through the given points is independent

of the choice of points. The number Wd is called the Welschinger’s invariant.
In particular, |Wd| gives a lower bound for the actual number Nd(R) of real
rational plane curves passing through any given set of 3d− 1 generic points.
In the case of cubics (d = 3) from the Degtyarev-Kharlamov theorem one
can see that W3 = 8.

The question of passing through some number of points is the simplest
one. The next step is to ask about the number of algebraic curves passing
through some number of points and tangent to some given algebraic curves.
In particular, in 1848, J. Steiner [16] asked how many conics are tangent to
five given conics in CP2. The correct answer of 3264 was found by M. Chasles
[4] in 1864. In 1984, W. Fulton asked how many of these conics can be real and
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in 1997, F. Ronga, A. Tognoli and Th. Vust [15] proved that all 3264 conics
can be real. Another celebrated problem is due to Zeuthen. Given l lines and
k = d(d + 3)/2− 1 points in CP2, the Zeuthen number Nd(l) is the number
of nonsingular complex algebraic curves of degree d passing through the k
points and tangent to the l lines. It does not depend on the chosen generic
configuration C of points and lines. If, however, points and lines are real, the
corresponding number NR

d (l, C) of real curves usually depends on the chosen
configuration. For l = 1, it was shown by F. Ronga [14] that the real Zeuthen
problem is maximal: there exists a configuration C such that NR

d (1, C) =
Nd(1). For l = 2 a similar maximality result was obtained by B. Bertrand
[2] using Mikhalkin’s tropical correspondence theorem. In the complex case
in 1996 L. Caporaso and J. Harris found the recursive formulas in the spirit
of M. Kontsevich for such tangency questions. In the real case that kind
of questions of tangency is quite new and the serious development is just
beginning. J.-Y. Welschinger in [18] considered curves in RP2 passing through
a generic set of points and tangent to a non-oriented smooth simple zero-
homologous curve. See Section 1.3 for a detailed discussion of Welschinger’s
results and a comparison with the present work.

We are interested to merge rigid algebro-geometric objects with flexible
objects from smooth topology. We count algebraic curves in R2 that pass
through a generic set of points and are tangent to an oriented immersed
curve. In addition, we relate the dependence on a chosen configuration to
the theory of finite type invariants.

1.2. Motivation. Let us start with a toy model: consider the case d = 1.
Let L be a set of lines in R2 passing through a fixed point p and tangent to

a (generic) oriented immersed plane curve Γ. The problem is to introduce a
sign εl for each such line l ∈ L so, that the total algebraic number N1(p,Γ) =∑

l∈L εl of lines does not change under homotopy of Γ in R2r p. It is easy to
guess such a sign rule. Indeed, under a deformation shown in Figure 1a, two
new lines appear, so their contributions to N1(p,Γ) should cancel out. Thus,
their signs should be opposite and we get the sign rule shown in Figure 1b.
Note that only the orientation of Γ is used to define it; l is not oriented.

p

Γ Γ

p
l

ΓΓ

l
+1 −1

a b

Figure 1. Counting lines with signs.

Suppose that p is close to infinity (i.e., lies in the unbounded region of
R2rΓ). In this case we get N1(p,Γ) = 2 ind(Γ), where ind(Γ) is the Whitney
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index (a.k.a. rotation number) of Γ, i.e. the number of turns made by the
tangent vector as we pass once along Γ following the orientation. In other
words, ind(Γ) equals to the degree of the Gauss map GΓ : S1 → S1 given by

GΓ(t) =
γ′(t)

‖γ′(t)‖
, where γ : S1 # R2 is a parametrization of Γ. Hence, the

Whitney index can be calculated as an algebraic number of preimages of a
regular value ξ ∈ S1 of the Gauss map GΓ, see Figure 2a.
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Γ

ind(Γ) = −1− 1− 1 + 1 = −2 indp(Γ) = −1 + 1− 1− 1 = −2

a b

Figure 2. Whitney index of Γ and an index of p w.r.t. to Γ.

While N1(p,Γ) is preserved under homotopies of Γ in R2 r p, it changes
when Γ passes through p, see Figure 3.

p

ΓN = 0

p

ΓN = +2

Figure 3. Counting lines with signs.

The compensating term is also easy to guess and we finally obtain

(1) N1(p,Γ) = 2 ind(Γ)− 2 indp(Γ) .

Here the index indp(Γ) of p w.r.t. Γ is the number of turns made by the
vector connecting p to a point x ∈ Γ, as x passes once along Γ following the
orientation. It may be computed as the intersection number I([p,∞],Γ;R2)
of a 1-chain [p,∞] (i.e. an interval connecting p with a point near infinity of
R2) with an oriented 1-cycle Γ in R2. See Figure 2b.

The appearance of ind(Γ) and indp(Γ) in the above formula comes as no
surprise: in fact, these are the only invariants of the curve Γ under its homo-
topy in the class of immersions in R r p. These are the simplest finite type
invariants of plane curves, see [1].



COUNTING REAL CURVES WITH PASSAGE/TANGENCY CONDITIONS 5

In this simple example we see two main distinctive differences of real enu-
merative problems vs. complex problems of a similar passage/tangency type.
Firstly, in the real case we are to count algebraic curves under the consider-
ation with signs. Secondly, over C the answer is a number which does not
depend on the relative position of the set of points and the curve Γ. Over
R, however, the answer depends on the configuration: it is preserved un-
der small deformations of Γ and the set of points, but experiences certain
(well-controlled) jumps when the configuration crosses certain singular dis-
criminant in the process of homotopy. Thus, in the general case for similar
enumerative problems we should not expect to get an answer as one number,
but rather as a collection of numbers, depending on the relative configuration
of points and the smooth curve.

Two main questions in this kind of problems are

1. How to find such sign rules, i.e. how to assign a certain sign to
each algebraic curve under consideration, so that the total algebraic
number is invariant under small deformations?

2. How does the singular discriminant looks like, and what is the explicit
structure of the formula for the algebraic number of curves?

1.3. Main results and the structure of the paper. We count the alge-
braic number of real plane rational nodal curves of degree d passing through
a given set of 3d− 2 generic points and tangent to a generic immersed curve
in the plane R2. We get a number, which does not depend on a regular ho-
motopy of the curve in a complement of a certain singular discriminant, see
Subsection 2.1. As the curve passes through the discriminant, this number
changes in a well-controlled way, so that it defines a finite type invariant
of degree one, see Section 4. A mixture of rigid algebro-geometric objects
with smooth topology gives to our problem a curious flavor, leading to a nice
merging of features and techniques originating in both of these fields. In par-
ticular, this type of passage/tangency problems turns out to be intimately
related to a theory of finite type invariants of plane curves, similarly to the
toy case of d = 1 considered in Subsection 1.2 above.

For this we count rational nodal curves with signs and add certain cor-
rection terms, which come from degenerate cases of nodal, reducible and
cuspidal curves. We use Welschinger’s signs and show an easy way to pro-
duce new signs suitable for tangency questions. The technique of proofs uses
the concept of configuration spaces and the intersection theory in the spirit
of classical differential topology.

The question of passage/tangency conditions for real rational plane alge-
braic curves was considered earlier by J.-Y. Welschinger in [18]. He consid-
ered projective curves in RP2 passing through a generic set P and tangent to a
non-oriented smooth simple zero-homologous curve Γ. In [18, Remark 4.3(3)]
the author suggested the generalization to the case of a non-oriented smooth
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immersed curve Γ, which bounds an immersed disk; unfortunately, this for-
mula does not extend to arbitrary immersed curves, e.g. to a figure-eight
curve. There is a number of differences between [18] and the present work.
Firstly, we consider oriented curves in R2 (thus adding orientations both to
the curve and to the ambient manifold). Secondly, we consider immersed
curves. Finally, in contrast with [18], where the author used 4-dimensional
symplectic geometry and hard-core techniques from the theory of moduli
spaces of pseudo-holomorphic curves, we use down to earth classical tools of
differential topology. In this way we also get a clear geometric interpreta-
tion of Welschinger’s number wC as the orientation of a certain surface in
ST∗R2 (i.e. the manifold of oriented contact elements of the plane), which
parameterizes real rational algebraic curves passing through P .

The paper is organized in the following way. In Section 2 we introduce
objects of our study, define signs of tangency, list the requirements of a
general position, and formulate the main theorem. Section 3 is dedicated to
the proofs. We interpret the desired number of curves as a certain intersection
number; the main claim follows from different ways of its calculation. In
Section 4 we discuss a relation of real enumerative geometry to finite type
invariants.

Acknowledgement. The authors would like to thank an anonymous referee
for his valuable suggestions.

2. The Statement of the Main Result. Sketch of the Proof.

2.1. Curves and points in general position. Let P = {p1, . . . , p3d−2},
pi ∈ R2, i = 1, . . . , 3d − 2 be a (3d − 2)-tuple of (distinct) points in R2.
Consider the following sets CP , T P , RP in R2 r P determined by P :

(i) We say that p ∈ CP (resp. p ∈ T P), if there exists an irreducible
rational curve of degree d, which passes through P, has a cusp (resp.
tacnode or a triple point) at p and whose remaining singularities are
nodes in R2 r P .

(ii) We say that p ∈ RP , if there exists a reducible curve C1∪C2 of degree
d with p ∈ C1 ∩ C2, which passes through P and such that C1 and
C2 are irreducible rational nodal curves with nodes in R2 rP, which
intersect transversely at their non-singular points.

For p ∈ P denote by D(p) the set of all irreducible rational nodal curves
of degree d, which pass through P , have a crossing node at p and whose
remaining nodes are in R2 rP . Denote by D(P) the set D(p) together with
curves listed in (i)− (ii) above. Denote also S := P ∪ CP ∪RP .

Suppose that the (3d − 2)-tuple P is in general position. Explicitly, we
will assume that the following conditions hold:

1. For any k < d, no 3k points from P lie on one rational curve of degree
k.
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2. The set S is finite. Every point p in CP ∪ RP lies on exactly one
curve from D(P). For every p ∈ P the set D(p) is finite.

3. All rational curves of degree d passing through P are either irreducible
nodal, with nodes in R2 rS, or belong to D(P).

Now, let Γ be a generic immersed oriented curve in R2 in general position
w.r.t. P . Let us spell this requirement in more details. By a general position
we mean that

4. The curve Γ is generically immersed, i.e., it is a smooth curve with a
finite number of double points of transversal self-intersection as the
only singularities.

5. The curve Γ intersects each of the curves from the set D(P) transver-
sally, in points which do not belong to S.

6. Every irreducible rational nodal curve of degree d passing through P
is tangent to Γ at most at one point, with the tangency of the first
order. Every point of Γ is a point of tangency with at most one such
a curve.

Define the singular discriminant ∆ as the set of pairs (P ,Γ) that violate the
general position requirements listed above.

2.2. Signs of points and curves. Recall that the Welschinger’s sign wC

of a rational curve C is defined as wC = (−1)m(C), where m(C) is the mass
(i.e., the number of solitary points) of C. For each p ∈ S we define ιp by

ιp =


−Wd + 2 ·

∑
C∈D(p)wC if p ∈ P ,

−wC if p ∈ CP ,

wC if p ∈ RP

where C is (the unique) cuspidal or reducible curve of degree d passing
through {p} ∪ P for p ∈ CP ∪RP .

Denote by Md(P ,Γ) the set of real rational nodal curves passing through
P and tangent to Γ. We fix the standard orientation oR2 on the plane R2

once and for all. To each C ∈ Md(P ,Γ) we assign a sign εC = wC · τC , where
τC is a sign of tangency of C with Γ, which is defined similarly to Subsection
1.2 as follows:
Let p be the point of tangency of Γ with C. For a sufficiently small radius r,
C divides the disk D(p, r) centered at p into two parts. Since the tangency
of Γ and C is of the first order, their quadratic approximations at this point
p differ. Hence, Γ ∩ D(p, r) belongs to the closure of one of the two parts of
D(p, r)rC. Let n be a normal vector to C at p, which looks into the closure
of the part which contains Γ, and let t be the tangent vector t to Γ at p. Set
τC = +1 if the frame (t, n) defines the positive orientation oR2 of R2, and
τC = −1 otherwise. See Figure 4 (compare also with Figure 1b).
Note that while the immersed curve Γ is oriented, the algebraic curve C is
not, and we use just the orientation of Γ in order to define the sign τC .
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Figure 4. Signs of tangency τC .

2.3. The statement of the main result. Let Nd(P ,Γ) be the algebraic
number

Nd(P ,Γ) :=
∑

C∈Md(P,Γ)

εC

of real rational nodal curves passing through P and tangent to Γ. The main
result of this work is the following

Theorem 2.1. Let P = {p1, . . . , p3d−2} ⊆ R2 and Γ be an immersed oriented
curve in R2, all in general position. Then

(2) Nd(P ,Γ) = 2

(
Wd · ind(Γ) +

∑
p∈S

ιp · indp(Γ)

)
.

The number Nd(P ,Γ) is invariant under a regular homotopy of the pair (P ,Γ)
in (each connected component of) the complement of the singular discrimi-
nant ∆.

2.4. The case of cubics. Degree d = 3 is the first case when all general
difficulties appear. Namely, the number N3(R) is different from one and
depends on a configuration of points, and curves may have cuspidal singular-
ities. Although cubics have no tacnodes or triple points, these singularities
do not contribute to (2), so are irrelevant for computation of Nd(P,Γ).

There are three types of irreducible real rational cubics: cubics with one
crossing node, cubics with one solitary node and cuspidal cubics with one
cusp point. A reducible cubic is the union of a line and a conic. The number
of curves in D(P) and points in CP ,RP are bounded from above as follows.
The number of points in RP is no more than

(
7
2

)
= 21. Due to [11], there are

at most 24 cuspidal cubics passing through seven points in general position
in CP2, hence |CP | ≤ 24. Also, there are no tacnodes or triple points, so
T P = ∅. From [17, Theorem 3.2] one can deduce that |D(p)| ∈ {0, 1}. Since
W3 = 8 and for a nodal cubic m(C) = 0, 1 if C has a crossing or solitary
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node respectively, we get

ιp =


−8 + 2|D(p)| if p ∈ P ,

−1 if p ∈ CP ,

+1 if p ∈ RP .

and Theorem 2.1 implies:

Corollary 2.2. Let P = {p1, . . . p7} ⊆ R2 and Γ be an immersed oriented
curve in R2, all in general position. Then

N3(P ,Γ) = 2

8 ind(Γ) +
∑
p∈P

ιp · indp(Γ)−
∑
p∈CP

indp(Γ) +
∑
p∈RP

indp(Γ)


2.5. The main example. Firstly, consider Γ = T , where T = ∂D(p, r) is
a circle of infinitesimally small radius 0 < r << 1 in R2, centered at p.
Suppose that T is far from S, i.e, T is in the complement of some closed disk
D2 which contains S. See Figure 5a.

pp
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.. .

.

..
D2

12
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.. .

.

..

.
.. .

.

T

..

a b

Figure 5. Changing a point into a circle.

Viewing T as a point p, i.e. taking the limit r → 0, we get 3d − 1 generic
points {p} ∪ P in the plane. We have Wd rational nodal curves of degree d
passing through {p} ∪ P, counted with their Welschinger’s signs. Thus the
algebraic number Nd(P ,Γ) of rational nodal curves passing through P and
tangent to T counted with the sign εC is equal to 2Wd. Indeed, each rational
nodal curve passing through {p} ∪ P gives 2 rational nodal curves passing
through P and tangent to T , see Figure 5b. Moreover, from the definition of
the sign τC we have that τC = +1 for any C ∈ Md(P ,Γ). Thus in this case

Nd(P ,Γ) =
∑

C∈Md(P,Γ)

wC · τC = 2

 ∑
C passes through {p}∪P

wC

 = 2Wd .

Reparameterizing the circle T by S1 → S1, z 7→ zk, k ∈ Z (and deforming
it slightly into a general position) we get a curve denoted by k · T for which
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we have ind(k · T ) = k and

Nd(P ,Γ) = 2kWd .

Since every immersed curve Γ is homotopic in the class of immersions in R2

to k · T , where k = ind(Γ), we have that Nd(P,Γ) = 2Wd · ind(Γ) for a curve
Γ lying in the complement of some closed disk of a sufficiently large radius,
which contains S.

2.6. The idea of the proof. Consider a solid torus M = D2×S1, where D2

is a sufficiently large closed disk containing S. We will show that the number
Nd(P ,Γ) in Theorem 2.1 is the intersection number I(L,Σ;M) of an oriented
smooth curve L with a compactification Σ of an open two-dimensional surface
Σ in M . The surface Σ is constructed as follows:
For each p ∈ D2rS, we use a contact element (line) of curves passing through
{p} ∪ P to get Σ as a lift of D2 rS into M . Lifting Γ into M in a similar
way we get L. The Welschinger’s sign wC gives rise to the orientation on Σ
and the orientation of Γ defines the orientation of L.
In order to define the intersection number, we compactify Σ to get a compact
surface Σ with boundary. This is done by blowing up punctures S on D2,
i.e., we cut out a small open disk around each puncture and then we lift the
remaining domain into M . Due to generality of a pair (P ,Γ), L transversally
intersects Σ in a finite number of regular points of Σ. Each point (p, ξ) ∈
L t Σ corresponds to a curve passing through P and tangent to Γ. We prove
that the local intersection number I(p,ξ)(L,Σ;M) equals to τC ·wC , and thus

Nd(P,Γ) = I(L,Σ;M).

Now to get the right hand side of the formula (2) we use the homological
interpretation of the intersection number. We take Γ′ := ind(Γ) · T as in
the main example, see Subsection 2.5, so Γ′ is homotopic to Γ in the class
of immersions. Hence [Γ] − [Γ′] = ∂K in C1(D2;Z) for some 2-chain K ∈
C2(D2;Z). Then for the lifts L′ and K of Γ′ and K, respectively, into M we
have [L]− [L′] = ∂K in C1(M ;Z), and hence

I(L,Σ;M) = I(L′,Σ;M) + I(∂K,Σ;M).

From the main example we obtain I(L′,Σ;M) = 2Wd ·ind(Γ′) = 2Wd ·ind(Γ).
Finally, to complete the proof we show that

I(∂K,Σ;M) = I(K, ∂Σ;M) = 2
∑
p∈S

ιp · indp(Γ).

Remark 2.3. A simple way to visualize the surface Σ is to apply the above
construction to the model example of Section 1.2. In this case S consists of
one point p and the contact element of any line passing through p is the line
itself, so the surface is a helicoid, see Figure 9.
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3. The proof of the main result.

The manifold of oriented contact elements (directions) of the plane is
ST∗R2, the spherization of the cotangent bundle of the plane. We fix an
orientation oST∗R2 = oR2 × oS1 on ST∗R2, where oS1 is the standard counter-
clockwise orientation on S1.

3.1. Construction of M,Σ,Σ, L.
Construction of Σ. Consider a (3d−2)-tuple P = {p1, . . . , p3d−2} of points
in R2 in general position. Recall that S := P ∪CP ∪RP , see Subsection 2.1.
Let S := R2 rS. Define

Σ :=

(p, ξ) ∈ ST∗(R2 rS)
there is a rational curve of degree d
passing through {p} ∪ P and having ξ
as a tangent direction at a point p


Denote by π : Σ → S the natural projection π((p, ξ)) = p.

Proposition 3.1. The set Σ is a (non-compact) immersed orientable two-
dimensional surface in ST∗R2.

Proof. Consider an arbitrary p ∈ S and choose a branch of a curve C0 passing
through p. Lifting the point p using the tangent direction ξ of this branch, we
get a point in PT∗R2 which gives a pair (p,±ξ) of points in the double cover-
ing ST∗R2 of PT∗R2. Include the given curve C0 into a smooth 1-parametric
family Ct, t ∈ (−ε, ε), ε << 1 of rational curves of degree d passing through
P . Since p /∈ S, in a small neighborhood U of p the corresponding family
of contact elements smoothly depends on the point of contact. The lift of
this family of contact elements to Σ gives a smooth leaf Σ(Ct) of Σ in a
neighborhood of (p, ξ). The topological structure of this smooth leaf Σ(Ct)
depends on the type of the curve C0.

If the initial curve C0 is not cuspidal, the family Ct foliates U , so the
projection π of Σ(Ct) on U is a diffeomorphism. See Figure 6a. Note that
the Welschinger’s sign w of all curves Ct in the family is the same. This
allows us to define a local orientation of Σ(Ct) as follows. It suffices to
define a continuous field ν normal to Σ(Ct). Since TxΣ(Ct) t TxS1 at each
point x ∈ Σ(Ct), such a normal vector νx is determined by its projection to
TxS1. Recall, that we have already fixed the orientation oS1 on the fiber S1

of ST∗R2. We set the direction of TxS1-component of νx in the direction of
oS1 if w = +1, and opposite to this direction if w = −1.

If C0 is cuspidal, both subfamilies C− = {Ct|t ∈ (−ε, 0)} and C+ =
{Ct|t ∈ (0, ε)} foliate the same region of U rC0, with Welschinger’s sign w±

of all curves in each subfamily C± being the same and w− = −w+, see [17,
Proposition 2.16]. The corresponding leaf Σ(Ct) of Σ has the structure of a
fold, see Figure 6b. Two (open) sheets Σ±(Ct) of this fold correspond to the
lift of contact elements of curves in the subfamilies C±. Since curves in the
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C0
−

tC

+
tC

C0

C0

S1

tC −+

Σ t(C  )+

Σ t(C  )−

U

M

tCC0

ξ Σ t(C )

S1

ξ

U

M

p

(p,  )

p

a b c

Figure 6. Smooth sheets and folds of Σ.

subfamilies C± have opposite Welschinger’s signs w±, we define the TxS1-
component of νx as above for x ∈ Σ±(Ct) and extend ν continuously (with
TxS1-component being zero) to the fold of Σ(Ct) (i.e. the lift of C0). �

The topological structure of Σ in a small neighborhood of (p, ξ) depends
on the type of the point p. Namely, if p is generic then 3d− 1 points {p}∪P
are in general position and define a real general (d−1)(d−2)

2
-dimensional space

of curves of degree d that contains Nd(R) irreducible rational nodal curves
which intersect transversely in p. All of these curves pass through p with
different tangent directions. Thus above a small neighborhood of a generic
point p the surface Σ has a structure of a smooth 2Nd(R)-covering. The same
covering structure appears if p lies on a curve with a triple point or tacnode
(but is different from a tacnode, p /∈ T P). Note that while the number
2Nd(R) of sheets over p depends on P and p, the number of sheets counted
with their orientations (i.e., the local degree of π : Σ → S at a regular value
p) does not depend on {p} ∪ P and equals 2Wd.

If some branches of curves which pass through {p} ∪ P have the same
tangent directions in p (in particular, if p is a tacnode), the corresponding
lift has the structure of an open book, and sheets of the book come in pairs
with each pair forming a smooth surface, see Figure 7a. The same open book
structure appears if p lies on a reducible curve or a curve with a node at some
pi ∈ P , see Figure 7b.

Remark 3.2. We have to cut out points of S from R2 in the construction
of Σ above since Σ does not extend to an immersed surface over S. Indeed,
if p ∈ CP ∪RP , tangent directions to curves in 1-parametric families Ct used
in the proof of Proposition 3.1 do not change smoothly in a neighborhood of
p (see Figure 12b,c). If p ∈ P, the obstacle is different: there are infinitely
many tangent directions of curves passing through p. Note, that while points
in T P are also singular points of curves in D(P), there is no need to cut
them out from R2 since the corresponding tangent directions to curves in Ct
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pi

pi

pipi

pi

a b

Figure 7. Branch points of Σ.

change smoothly in a neighborhood of a tacnode or a triple point, and the
number of tangent directions in p is finite.

Compactification of ST∗R2 and Σ. In order to use the intersection theory,
we need to compactify both the open manifold ST∗R2, and the non-compact
surface Σ with punctures over S.

Let D2 := D(0, R), R >> 1 be a closed disk in the plane R2, centered at

the origin and of a sufficiently large radius, such that S ⊆ D(0, R/2) ⊆ D2.
Define M := ST∗D2 = D2 × S1.

Let us choose 0 < δ << 1 sufficiently small, such that

1. D(p, δ) ∩ D(q, δ) = ∅ for all p 6= q ∈ S,

2. D(p, δ) ∩ Γ = D(p, δ) ∩ ∂D2 = ∅ for all p ∈ S,

3. D(p, δ) does not contain points but p of mutual intersections of all
curves from D(P) for all p ∈ S,

4. ∂D(p, δ) intersects transversally every C ∈ D(P) for all p ∈ S. These
intersections look as shown in Figure 8.

p δD(  ,   )

p

p δD(  ,   )

p

p δD(  ,   )

p

p δD(  ,   )

p

Figure 8. Intersections of blowup disks with cubics.
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For each p ∈ S we cut out the disk D(p, δ) from D2 and define

S̄ := D2 r
⋃
p∈S

D(p, δ), Σ := π−1(S̄) = Σ ∩
(
S̄ × S1

)
.

For all p ∈ S let σp := Σ∩(∂D(p, δ)×S1); it is the union of several smooth
closed simple curves on Σ. We equip σp with the orientation induced from
Σ. See Figure 9.

S1

Σ

σp

S

ν

Figure 9. A compactification Σ of Σ.

Construction of L. Let Γ = f(S1) be oriented immersed curve, where f :
S1 # R2 is an immersion. Choosing the unit tangent vector to f(t) as the
contact element, we get a lift L of Γ into ST∗R2:

L := F (S1), F : S1 ↪→ ST∗R2, t 7→
(
f(t),

f ′(t)

‖f ′(t)‖

)
.

It follows that L is an oriented closed one-dimensional submanifold of ST∗R2.
If Γ is generic in the sense of Section 2.1, then L intersects Σ only in reg-
ular points (i.e., points such that Σ ∩ U is diffeomorphic to R2 for some
neighborhood U in M).

3.2. Two ways to calculate the intersection number I(L,Σ;M). We
will consider two different ways to calculate the intersection number I(L,Σ;M),
which will correspond to the LHS and the RHS of equality (2).
The intersection number I(L,Σ;M) via the algebraic number N .
Every point (p, ξ) ∈ Σ∩L corresponds to an irreducible rational nodal curve
C(p, ξ), passing through P and tangent to Γ at the point p with the tangent
direction ξ. Since P and Γ are in general position, we have that L and Σ
intersect transversally, and since dim(L) = 1, dim(Σ) = 2 and dim(M) = 3,
we have that dim(L t Σ) = 0. So the number of points in L t Σ is finite.
Both L and Σ are oriented, as isM , hence the intersection number I(L,Σ;M)
is well defined and we have

I(L,Σ;M) =
∑

(p,ξ)∈LtΣ

I(p,ξ)(L,Σ;M),
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where I(p,ξ)(L,Σ;M) is the local intersection number.

Proposition 3.3. For every (p, ξ) ∈ L t Σ we have

I(p,ξ)(L,Σ;M) = εC(p,ξ),

where εC is the sign of the curve C, see Subsection 2.2.

Proof. The orientation of T(p,ξ)Σ is defined by the Welschinger’s sign wC(p,ξ).

The curve L intersects Σ in the direction of the oriented fiber F iff τC(p,ξ) =

+1, see Figure 10. Hence the orientation of T(p,ξ)Σ⊕ T(p,ξ)L differs from the

Σ

S1 L

Γ ξ

C

ξ Σ

S1 L

Γ

ξ

C

ξ

τ=+1 τ=−1

p p

Figure 10. Intersection of L with Σ.

orientation oST∗R2

∣∣
M

of M by the sign εC(p,ξ) = wC(p,ξ) · τC(p,ξ) and we get

I(p,ξ)(L,Σ;M) = εC(p,ξ). �

Corollary 3.4. We have Nd(P ,Γ) =
∑

C∈Md(P,Γ)

εC = I(L,Σ;M)

The intersection number I(L,Σ;M) via a homological theory. Let
us take k ·T, k = ind(Γ) as in Subsection 2.5 which is regularly homotopic to
Γ in D2, and h : S1× [0, 1] → D2 be a homotopy between k ·T and Γ. Denote
Γt := h(S1×{t}), t ∈ [0, 1], so Γ0 = k ·T and Γ1 = Γ. Denote by Lt a lift of Γt

to M . Then L′ = L0, L = L1 and a 2-chain K := {Lt|t ∈ [0, 1]} ∈ C2(M ;Z)
realizes a homotopy between L′ and L. We choose an orientation of K such
that ∂K = [L]− [L′]. Because of the homotopy invariance of the intersection
number, we may choose a special homotopy h as follows. For all p ∈ S pick
an open neighborhood Up of D(p, δ) and a direction ξp transversal to tangent
directions of all curves from D(P) at p. See Figure 11a. Now, choose the
homotopy h so that for all t ∈ [0, 1] with Γt ∩ Up 6= ∅, the fragment Γt ∩ Up

is close to a straight interval in the direction ξp. For such a homotopy the
part K ∩ (Up × S1) of K over Up is almost flat, i.e., lies in a thin cylinder

K ∩ (Up × S1) ⊆ Up × (ξp − ε, ξp + ε),

for some small 0 < ε << 1. See Figure 11b.



16 SERGEI LANZAT AND MICHAEL POLYAK

pξ

p

pξ  − ε

pξ  + ε
Lt

Γt

pξ

M

S

pξ

p

p

a b

Figure 11. A flat homotopy of Γ.

By the additivity of the intersection number and according to the calcula-
tions in the Subsection 2.5 we have

I(L,Σ;M) = I(L′,Σ;M) + I(∂K,Σ;M) =

= 2Wd · ind(k · T ) + I(∂K,Σ;M) = 2Wd · ind(Γ) + I(∂K,Σ;M)

It remains to compute I(∂K,Σ;M).

Lemma 3.5. For Σ,K, σp and L as before we have

I(∂K,Σ;M) =
∑
p∈S

I(K, σp;M).

Proof. Recall that I(∂K,Σ;M) = I(K, ∂Σ;M). Now, as a 1-chain in M ,

∂Σ = ∂Σ ∩ (∂D2 × S1)) +
∑
p∈S

σp.

Since K ∩ (∂D2 × S1) = ∅, we get I(K, ∂Σ;M) =
∑
p∈S

I(K, σp;M). �

The following proposition completes the proof of the main theorem.

Proposition 3.6. For every p ∈ S we have

I(K, σp;M) = 2ιp · indp(Γ).

Proof. Firstly, recall that ST∗D2 → PT∗D2 is a 2-fold covering, so for ev-
ery component of the lift of ∂D(p, δ) to PT∗D2 there are two components
in ST∗D2, which explains the coefficient 2 in the RHS. Secondly, note that
I(K, σp;M) = I(Kp, σp;M) for every p ∈ S, where Kp := K ∩ (Up × S1).
In order to compute I(Kp, σp;M) we study the homology class [σp] ∈ H1(M ;Z)
of σp. Since H1(M ;Z) = Z〈[F ]〉, where [F ] is the class of the fiber, we con-
clude that [σp] = kp · [F ] for some kp ∈ Z. The number kp is the degree
degGp of the corresponding projection map Gp : σp → F to the fiber F of
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M . It can be computed as the algebraic number of preimages (Gp)
−1(ξ) of

a regular value ξ. Each preimage (q, ξ) ∈ σp is counted with its sign – the
local degree deg(q,ξ)Gp of Gp at (q, ξ).

Both preimages and their signs can be recovered from the projection π :
σp → ∂D(p, δ). Indeed, a preimage (q, ξ) ∈ σp corresponds to the point
q ∈ ∂D(p, δ) and the curve C(q, ξ) passing through q ∪ P and having a
tangent direction ξ at q. Moreover, the orientation of T(q,ξ)σp is induced from
that of Σ which, in turn, is defined by the Welschinger’s sign wC(q,ξ). Thus
the orientation of the projection π : σp → ∂D(p, δ) at q differs from the
clockwise orientation on ∂D(p, δ) by wC(q,ξ) (see Figure 9) . Therefore, the
local degree deg(q,ξ)Gp equals to wC(q,ξ) · ρq, where ρq = 1 (resp. ρq = −1) if
the field of tangent directions of curves corresponding to σp rotates counter-
clockwise (resp. clockwise) w.r.t. ξ as we move clockwise along ∂D(p, δ) in a
neighborhood of q.

To find the corresponding curves C(q, ξ), note that any curve passing
through q ∪ P for q ∈ ∂D(p, δ) is obtained by a small deformation of some
rational curve Cp of degree d in the following finite set:

(i) If p /∈ P , then Cp passes through 3d− 1 points p ∪ P .
(ii) If p ∈ P , then Cp passes through 3d − 2 points P and either has a

node at p, or has a tangent direction ξ at p.

Consider these cases separately using the standard methods of singularity
theory.
Case 1: p /∈ P. If Cp is nodal, its small deformation is shown in Figure 12a.
For sufficiently small δ, the corresponding tangent field is almost constant
and for a generic choice of ξ there are no preimages.

If Cp ∈ D(P), its small deformations for p ∈ CP , and p ∈ RP are shown in
Figures 12b and 12c respectively.

ρ=−1

ρ=+1

ρ=+1

ρ=+1

a b c

Figure 12. Counting preimages for p /∈ P.

For p ∈ RP , there are two preimages, both with ρq = 1 and wC(q,ξ) = wCp ,
see Figure 12c. Thus the local degree of each of these two preimages equals
wCp = ιp, so degGp = 2ιp.

For p ∈ CP there are also two preimages: one with ρq = −1 and wC(q,ξ) =
wCp , and the other with ρq = 1 and wC(q,ξ) = −wCp , see Figure 12b. Thus the
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local degree of each of these two preimages equals −wCp = ιp and degGp =
2ιp.
Case 2: p ∈ P. If Cp is nodal with node at p (i.e., Cp ∈ D(p)), its small
deformations are shown in Figure 13a. Again, for sufficiently small δ, the
corresponding tangent fields are almost constant and for a generic choice of
ξ there are no preimages.

ρ=−1
ρ=−1

a b

Figure 13. Counting preimages for p ∈ P.

If Cp = C(p, ξ) is nodal with a tangent direction ξ at p, its small deforma-
tions are shown in Figure 13b. There are two preimages, both with ρq = −1
and wC(q,ξ) = wC(p,ξ), see Figure 13b. Thus the local degree of each of
these two preimages equals −wC(p,ξ) and each such curve C(q, ξ) contributes
−2wC(p,ξ) to degGp. By [17, Proposition 3.4]∑

C(p,ξ)

wC(p,ξ) + 2
∑

C∈D(p)

wC = Wd ,

where the first sum is over all nodal curves with a tangent direction ξ at p.
Therefore, in this case we also get

degGp = −2
∑
C(p,ξ)

wC(p,ξ) = 2(−Wd + 2
∑

C∈D(p)

wC) = 2ιp .

We finally conclude that in all cases kp = degGp = 2ιp. By the choice of
the homotopy h,

I(Kp, σp;M) = kp · I(Kp, {p} × S1;M) = 2ιp · I(Kp, {p} × S1;M).

We finish the proof by observing that

I(Kp, {p}×S1;M) = I(h(S1×[0, 1]), [p];R2) = I(h(S1×[0, 1]), [p]−[∞];R2)

= −I(∂h(S1 × [0, 1]), [p,∞];R2) = indp(Γ).

�
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4. Finite type invariants.

Finite type invariants generalize polynomial functions. This notion is based
on the following classical theorem:

Theorem 4.1 (Frechet 1912). Given x0, x
±
1 , . . . , x

±
n ∈ R and an n-tuple

ε = (ε1, . . . , εn) ∈ {−1, 1}n, let xε = x0 + xε1
1 + · · · + xεn

n and |ε| =
∏n

i=1 εi.
Then C0-function f : R → R is a polynomial of degree less than n, iff∑

ε∈{−1,1}n
(−1)|ε|f(xε) = 0

for any choice of x0 and x±
1 , . . . , x

±
n .

Finite type invariants are topological analogues of this definition. Corre-
sponding theories are developed for a variety of objects: knots, 3-manifolds,
plane curves, graphs, etc. (see [13] for a general theory of finite type invari-
ants of cubic complexes). Let us briefly recall the main notions in the case of
immersed curves in a punctured plane. Let S ⊂ R2 be a finite set of marked
points and Γsing be an immersed plane curve with n non-generic fragments,
contained in n small disks Di (all in general position). Fix an arbitrary pair
of resolutions for each Di and call one of them positive and the other nega-
tive (again, arbitrarily). Here by a resolution of Γsing in a disk Di we mean a
homotopy of Γsing inside Di, fixed on the boundary ∂Di, so that the resulting
curve is a generic immersion inside Di and does not pass through S∩Di. See
Figure 14.

−

++

−

Figure 14. A non-generic curve with a pair of resolutions in
each disk.

For an n-tuple ε ∈ {−1, 1}n, resolve all singularities of Γsing choosing the
corresponding εi resolution in each disk Di. Denote by Γε the resulting curve.
In this way, as ε runs over {−1, 1}n, we obtain 2n generically immersed curves
Γε. See Figure 15.

Denote |ε| =
∏n

i=1 εi. A locally-constant function f on the space of gener-
ically immersed curves is called an invariant of degree less than n, if∑

ε∈{−1,1}n
(−1)|ε|f(Γε) = 0,
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Figure 15. Resolved generic curves.

for any choice of the curve Γsing and its resolutions.
When S = ∅, the only invariant of degree zero (i.e., a constant function

on the space of immersed curves) is the rotation number ind(Γ). Various
interesting invariants of degree one for S = ∅ were extensively studied by
V. Arnold, see [1]. When S consists of one point, we get an additional
simple invariant of degree one, namely indp(Γ). In a general case, any linear
combination of ind(Γ) and indp(Γ), p ∈ S is an invariant of degree at most
one.

Finite type invariants naturally appear in real enumerative geometry. One
of the simplest examples was considered in Section 1.2. Note that in the for-
mula (1), an algebraic number of lines passing through a point p and tangent
to a generic immersed curve Γ ⊂ R2r {p} is expressed via invariants ind(Γ),
indp(Γ) of degrees zero and one. This fact is easy to explain. Let us show,
that if a certain algebraic number of lines satisfying some passage/tangency
conditions is a locally constant function f on the space of generic immersed
curves, then it is an invariant of degree less than or equal to two. Indeed,
let Γsing be an immersed curve with three non-generic fragments contained
in three small disks Di, i = 1, 2, 3, which do not lie on one line (i.e., no line
passes through all three of them). Suppose that some line l is counted for
one of the resolutions Γε of Γsing. Then l does not pass through at least one
of the disks, say, D1. But then l is counted twice – with opposite signs – for
both resolutions of Γsing inside D1, hence its contribution to f sums up to 0,
and we readily get f(Γsing) = 0.

By the same argument (noticing that no rational curves of degree d pass
through 3d generic points), we immediately obtain the following

Theorem 4.2. Suppose that a certain algebraic number of real rational alge-
braic plane curves of degree d, satisfying some passage/tangency conditions,
is a locally constant function on the space of generic immersed curves. Then
it is an invariant of degree less than or equal to 3d− 1.

Moreover, if a curve is required to pass through k fixed points (in general
position), then an algebraic number of such curves is an invariant of degree
less than or equal to 3d − k − 1. In particular, for k = 3d − 2 we get the
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upper bound one on the degree of an invariant. This explains the structure
of formula (2) of Theorem 2.1.
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