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Rigidity vs. Flexibility

In complex geometry, objects are rigid (local

behavior determines global).

In smooth topology objects are flexible (any

local changes are possible).

Algebraic objects remain rigid even in real

situation, so, to take the best of both

smooth/algebraic worlds, we will take some

objects rigid and some smooth.
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Signs or no signs?

In complex geometry, objects are counted

without signs.

In real topology, objects are always counted

with signs.
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Generic vs. non-generic

Consider a space Imm(S1,R2) of generic

immersions of S1 to R2:

Generic immersions

Non-generic immersions
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Counting tangents- a toy model

We all know that there is one line passing

through a point in a given direction.

Now, how many lines are tangent to a

generic (oriented) immersed curve and pass

in a given direction?
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Does not make sense as stated: this

number may change under small

deformations of a curve.

Lets try to count lines with signs, so that

their number remains invariant under

homotopies in the class of immersions.

In particular, it should be preserved under

the following move:

No tangents Two new tangents
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Their signs should be opposite!

Get the following sign rule:

+ −

Then the algebraic number of tangents is

2rotC , where rotC is the Whitneys rotation

number, i.e. the number of turns made by a

tangent vector as we pass once along the

curve C :

10 2
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Now, lets count lines passing through a

given point p and tangent to a generic

(oriented) immersed curve C . Signs remain

the same.

The result is invariant under homotopies in

Imm(S1,R2 r p), but changes when a

homotopy passes through the fixed point p:

4 2 0
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What kind of invariant is it? When the

fixed point is far away from the curve, we

again get 2rotC (take p to infinity to see

it). When a homotopy passes through p,

the number of tangents jumps by ±2:
+2

So, while the number of lines changes, the

jumps happen in a well-controlled way.

In fact, it is easy to find a compensating

term, and the formula becomes

2rotC − 2ind(p,C ).
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Counting double tangents

Let’s now count double tangents to a pair

of immersed curves in R2:

We get the same sign rule (with the sign of

a line being the product of signs of the two

tangency points):

− +
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Then the algebraic number of double tangents

for disjoint curves situated ”far away” is

4rotC1rotC2, and it jumps by −2 or +2 when

curves experience a tangency:

+2 −2

Remark
In fact, we recover invariants J+ and J−

introduced by Arnold (1992).
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Generalize! Generalize!

Instead of lines, we can consider higher degree

curves, or hyperplanes etc. in similar

enumerative problems. Even a simple knowledge

that this can be done leads to non-trivial results!

Indeed, suppose that we know that the invariant

exists. What can we deduce from that?
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Example of conics

Definition
We will say that a degenerate conic (i.e. a cross

of lines) touches 5 generic ovals (= embedded

curves), if it is tangent to 4 out of 5.

A non-degenerate conic touches the ovals if it is

tangent to all of them:
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Theorem (Welschinger 2005)
There are ≥ 272 real conics which touch 5

generic non-nested ovals. If the ovals are convex,

at least 32 of these conics are non-degenerate.

Can easily generalize to conics touching 5

immersed curves and give a simple proof.

1/2 Proof: It is known that through 5 generic

points there passes exactly one irreducible conic:
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Take a very small circle centered in one of the

points.
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Take a very small circle centered in one of the

points.

There are two conics passing through 4 other

points and touching this circle (one on the outside

and one on the inside).
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Now lets compute the number of reducible

conics. There are 3× 5 ways to pick two pairs of

circles out of 5 and 4 tangent lines to each pair

of circles, thus we get a total of

240 = 3× 5× 4× 4 reducible conics touching

these circles.

Adding up, we get a total of 272 = 32 + 240

conics. But our total algebraic number of conics

is homotopy-invariant, so the answer for any 5

ovals is the same as for 5 small circles and we

are done.
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Main questions

In all of the above problems the same two

questions arise:

1 How to introduce such signs, i.e. construct

such invariants, in a simple and systematic

manner?

2 How to identify the resulting invariants?
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Q2: Which invariants appear?

It is easier to answer the 2nd question:

Theorem
All such invariants are of finite type. When we

count rational curves of degree n, this is an

invariant of degree < 3n/2.

Recall, that finite type invariants generalize

polynomial functions; corresponding theories are

developed for a variety of objects: knots,

3-manifolds, plane curves, graphs, etc.
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This notion is based on the following.

Theorem (Frechet 1912)
Given x0, x±1 , . . . , x±n ∈ R and an n-tuple

σ ∈ {−1, 1}n, let xσ = x0 + x
σ(1)
1 + · · · + x

σ(n)
n .

Then C 0-function v : R→ R is a polynomial of

degree less than n, iff
∑

σ∈{−1,1}n
(−1)|σ|f (xσ) = 0

for any choice of x0 and x±1 , . . . , x±n .

Finite type invariants are topological analogues

of this theorem/definition.
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In particular, let Γ be a plane curve with n

non-generic fragments:
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In particular, let Γ be a plane curve with n

non-generic fragments:

+

− −

+

Fix a pair of resolutions for each fragment.
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Choosing one of the two resolutions in each

place, we get 2n generic plane curves Γσ:

Definition
A homotopy-invariant function

v : Imm(S1,R2)→ R is a finite type invariant

of degree < n, iff
∑

σ(−1)|σ|v(Γσ) = 0 for any

choice of Γ and 2n resolutions..
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Example (Double tangents revisited)
Assume that (for a certain rule of signs) an

algebraic number of double tangents is an

invariant; let us prove that it is of degree < 3.

Pick an immersed curve with three non-generic

singularities and fix two resolutions for each of

them. We can make these in a small balls which

do not lie on one line.

We are to prove that the corresponding

alternating sum over all 23 resolved generic

curves vanishes.
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Example (Contd)
Any double tangent may involve fragments of

resolutions near at most two singular points,

thus it does not “notice” which resolution is

chosen near the third singular point:

But then this double tangent is counted in the

total alternating sum twice with opposite signs,

so its contribution is +1− 1 = 0.
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Q1: How to find sign rules?

A1
Use maps of configuration spaces and
homology intersections!

Example
For a pair of oriented immersed curves, let

Conf1,1 be the space of (ordered) pairs of points:
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Example (Contd)
Define φ : Conf1,1 → S1 × S1 by a pair of angles

between the tangent vectors and the vector

connecting the points:

This is a map of two oriented closed manifolds

of the same dimension, so has a well-defined

degree. It can be calculated as an algebraic

number of pre-images of any regular value.
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Example (Contd)
In particular, one may count preimages of a

value (0, 0). But these are exactly double

tangents of the type

Each preimage is counted with a sign (the local

degree). These are just the signs we need!

Indeed, it is well-known that a degree is invariant

under homotopy of a map.

Note BTW, that since the degree does not

depend on a choice of regular value, we would

get the same number for (π, 0) which counts
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other double tangents, or for (π/2, π/2) which

counts double normals!

Other problems (number of circles touching

three ovals, conics touching 5 ovals, etc. etc.)

may be solved in the same way. E.g., for

counting circles touching three ovals we consider

a similar space Conf1,1,1 of triples and its map

into S1 × S1 × S1, etc.

There is another useful way to think about the

meaning of such invariants. Namely, in a

homological language the image φ(Conf1,1) is a
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2-cycle in S1 × S1 and we intersect it with a

point (s, s).

But we can also pick another map and intersect

its image with some other cycle in the target!

For example, we can consider a similar map

Φ : Conf1,1 → S1 × S1 × S1, mapping each pair

to a pair of the tangent vectors and the vector

connecting the points. Intersecting the image

with the diagonal ∆ = {(x , x , x)} gives the

same answer.
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Curves of higher degrees

Can use the same idea in higher degrees, e.g.

Theorem (S. Lanzat +M.P.)
The algebraic number of rational cubics passing

through 7 generic points P = {p1, . . . , p7} and

tangent to an immersed curve C ∈ R2 is

16 (rotC − ind(P ,C ) + ind(R ,C )− ind(Q,C ))

Here R and Q are sets of nodes of reducible

cubics and cusps of cuspidal cubics, respectively,

passing through P.
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Higher dimensions

Can use the same idea in higher dimensions, e.g.

Theorem (Arnold 1970’s)
The algebraic number of planes in R3 which

contain a fixed line l and are tangent to an

immersed surface Σ is χ(Σ)− |l ∩ Σ|

Similar formula hold for planes passing through a

point and tangent to two immersed surfaces, or

planes tangent to three immersed surfaces.
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Higher dimensions- symplectic case

Consider a hypersurface Σ immersed in R2n

equipped with a standard symplectic form ω.

Call a tangent to Σ isotropic, if it is in the kernel

of the restriction of ω to T Σ. Let pR2n r Σ be

a generic point.

Theorem
The algebraic number of isotropic tangents to Σ

passing through p is 2 deg(GΣ)− 2ind(p, S),

where GΣ is the Gauss map of Σ.
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Knotty time!

A generic immersion of (several copies of) S1 to

R3 is an embedding, so Imm(S1,R3) is a space

of generic knots (or links). Technically, it is

more convenient to work with long (or string)

links, i.e. embeddings of several copies of R1 to

R3, which are standard outside a compact.

We can consider similar problems of intersection

and/or tangency, counting various algebraic

curves passing through/tangent to a link in

several points.
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Quadrisecants

E.g., we may count link/knot quadrisecants, i.e.

lines intersecting a link (or a knot) in 4 points:

12 4 3
1

4
2

3

Note that for long knots and links, we may

distinguish quadrisecants by the order of points

along the line. Just as in the planar case, any

algebraic number of various quadrisecants should

be an invariant of degree < 3.
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Theorem (J.Viro 2005)
The algebraic number of quadrisecants with a

(1, 2, 3, 4) cyclic order for a 4-component link in

RP3 is 2(lk12lk34 − lk23lk41)

Theorem
The algebraic number of (1, 2, 3, 4)

quadrisecants for a 4-component link in R3 is

lk12lk34.

1/2 Proof: Suppose that we found a sign rule

and constructed an invariant. Then it is easy to

identify it with lk12lk34. Indeed, it is known that
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the only link invariants of degree 2 are linear

combinations of lkij lkkl over transpositions (ijkl)

of (1234). Thus it remains to check its values on

pairs of Hopf links:
ij kl

It is an isotopy invariant, so we can take the

pairs far apart and make them very small:

But then we just count lines in a fixed direction

intersecting both components of each Hopf link-

this is the corresponding linking number!
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Theorem
Counted with appropriate (0,+1,−1)- weights,

the number of quadrisecants for a 3-component

long link in R3 is the Milnors triple linking

number µ123

Theorem (Budney, Conant et.al. 2004)
Counted with appropriate signs, the number of

(3,1,4,2) knot quadrisecants is v2 (the 2-nd

coefficient of the Alexander polynomial).

Proof takes 12 pages, with many technicalities

involved. But this can be done quite easily!
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Let K be a long knot. Define Conf4 to be the

space of (ordered) 4-tuples of points on K :

3

4
1

2
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Let K be a long knot. Define Conf4 to be the

space of (ordered) 4-tuples of points on K :

3

4
1

2

Consider a map φ : Conf4 → S2× S2× S2, map-

ping each pair (3, 1), (1, 4), (4, 2) to a direction

of the vector connecting the points.
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The image φ(Conf4) in S2 × S2 × S2 intersects

the diagonal ∆ = {(x , x , x)} by points.

Theorem
v2 = I (φ(Conf4),∆)

Conf4 is an open space (an open 4-simplex). We

compactify it in a standard näıve fashion,

making it into a closed 4-simplex. It turns out

that under knot isotopy φ(∂Conf4) never

intersects ∆, so I (φ(Conf4),∆) is an invariant.

It is of degree ≤ 2; to identify it, compute it for

the standard diagram of the trefoil.
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