From 3-manifolds to planar graphs and cycle-rooted trees

Michael Polyak

Technion

November 27, 2014

"CONFIRMING THE BELIEF THAT MUSIC AND MATH ARE RELATED, I WILL NOW SING SOME LOVELY FRENGH EQUATIONS."

Outline

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back
- Similar encodings for related objects: links in 3-manifolds, manifolds with Spin- or Spin${ }^{\text {c }}$-structures, elements of the mapping class group, etc.
- Encoding is not unique: finite set of simple moves on graphs (related to electrical networks)
- Various invariants of 3-manifolds transform into combinatorial invariants
- Configuration space integrals \rightarrow counting of subgraphs
- Low-degree invariants \rightarrow counting of rooted forests

Chainmail graphs

A chainmail graph is a planar graph G, decorated with \mathbb{Z}-weights:

- Each vertex v is decorated with a weight $d(v)$; A vertex is balanced, if $d(v)=0$ (can think about $d(v)$ as a "defect" of v); a graph is balanced, if all of its vertices are.
- Each edge e is decorated with a weight $w(e)$. A 0-weighted edge may be erased. Multiple edges are allowed. Two edges e_{1}, e_{2} connecting the same pair of vertices may be redrawn as one edge of weight $w\left(e_{1}\right)+w\left(e_{2}\right)$. Looped edges are also allowed; a looped edge may be erased.

From graphs to manifolds

Example (Graphs, corresponding to some manifolds)

$$
\begin{gathered}
{ }^{-1} \\
S^{3}
\end{gathered}
$$

$$
S^{2} \times S^{1}
$$

Poincare sphere

$$
S^{1} \times S^{1} \times S^{1}
$$

Given a chainmail graph G with vertices v_{i} and edges $e_{i j}, i, j=1,2, \ldots, n$ we consruct a surgery link L as follows:

- vertex $v_{i} \rightarrow$ standard planar unknot L_{i}
- ± 1-weighted edge $e_{i j} \rightarrow \pm 1$-clasped ribbon linking L_{i} and L_{j}

From graphs to manifolds

Linking numbers and framings of components are given by a graph Laplacian matrix Λ with entries

$$
l_{i j}= \begin{cases}w_{i j}, & i \neq j \\ d_{i i}-\sum_{k=1}^{n} w_{i k}, & i=j\end{cases}
$$

Example (Constructing a surgery link)

Different graphs and surgery links for the Poincare homology sphere

From manifolds to graphs

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

- Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^{3} branched along a link, etc.
- Similar constructions work also for a variety of similar objects: links in 3-manifolds, 3-manifolds with Spin- or Spin ${ }^{\text {c}}$-structures, elements of the mapping class group, etc.

Some info about M can be immediately extracted from G. In particular, M is a \mathbb{Q}-homology sphere iff $\operatorname{det} \Lambda \neq 0$ and then $\left|H_{1}(M)\right|=|\operatorname{det} \Lambda|$; also, signature of M is the signature $\operatorname{sign}(\Lambda)$ of Λ.

Proofs and explicit constructions ...

... No time to present here.

Calculus of chainmail graphs

An encoding of a manifold by a chainmail graph is non-unique. However, there is a finite set of simple moves which allow one to pass from one chainmail graph encoding a manifold to any other graph encoding the same manifold. The most interesting moves are

They are related to a number of topics: Kirby moves, relations in the mapping class group, electrical networks and cluster algebras, and Reidemeister moves for link diagrams (via balanced median graphs) -

Combinatorial invariants of 3-manifolds

Chern-Simons theory leads to a lot of knot and 3-manifold invariants. Attempts to understand the Jones polynomial in these terms led to quantum knot invariants, the Kontsevich integral, configuration space integrals and other constructions. In particular,
Perturbative CS-theory $\xrightarrow{\text { Feynman diagrams }}$ Configuration space integrals

- Rather powerful: contain universal finite type invariants of knots and 3-manifolds
- Very complicated technically
- Extremely hard to compute

We expect a similar combinatorial setup in our case: An appropriate CS-theory on graphs $\xrightarrow[\text { Feynman diagrams }]{\text { discrete }}$ Discrete sums over subgraphs
Types of subgraphs are suggested by the theory: uni-trivalent graphs for links; trivalent graphs for 3-manifolds.

Combinatorial invariants of 3-manifolds

This actually works! Here is the setup: we pass from the manifold M to its combinatorial counter-part \rightarrow a chainmail graph G. In both cases we use summations over similar Feynman graphs.

- Vertices of a Feynman graph: configurations of n points in $M \rightarrow$ sets of n vertices in G
- Edges of a Feynman graph: propagators in $M \rightarrow$ paths of edges in G
- Integration over the configuration space \rightarrow sum over subgraphs
- Compactifications and anomalies due to collisions of points in $M \rightarrow$ appearance of degenerate graphs when several vertices merge together

Θ-invariant of 3-manifolds

Let's see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the Θ-graph:

We count maps $\phi: \Theta \rightarrow G$ with weights and multiplicities. One can think about such a map as a choice of two vertices v_{i} and v_{j} of G, connected by 3 paths of edges which do not have any common internal vertices:

The weight $W(\phi)$ of ϕ is the product $L(\phi) \prod_{e \in \phi(G)} l_{e}$, where $L(\phi)$ is the minor of Λ, corresponding to all vertices of G not in $\phi(\Theta)$.

Θ-invariant of 3-manifolds

Degenerate maps should be counted as well. Such degeneracies appear when two vertices of the Θ-graph collide together to produce a figure-eight graph:

Diagonal entries of Λ also enter in the formula, when one lobe (or possibly both) of the figure-eight graph becomes a looped edge in the 4 -valent vertex. The weight of such a loop in v_{i} is $l_{i i}$. E.g., for the map

we have $W(\phi)=L(\phi) \cdot I_{i j} \cdot I_{j k} \cdot I_{k i} \cdot I_{i j}$. In the most degenerate cases - a triple edge or double looped edge - weights need to be slightly adjusted.

"I think you should be more explicit here in step two."

Θ-invariant of 3-manifolds

Theorem

$\Theta(G)=\sum_{\phi} W(\phi)$ is an invariant of M. If M is a \mathbb{Q}-homology sphere (i.e., $\operatorname{det} \Lambda \neq 0$), we have $\Theta(G)= \pm 12\left|H_{1}(M)\right|\left(\lambda_{C W}(M)-\frac{\operatorname{sign}(M)}{4}\right)$, where $\lambda_{C} W(M)$ is the Casson-Walker invariant.

Conjecture

The next perturbative invariant can be obtained in a similar way by counting maps of and to A .

Note that $\Theta(G)$ is a polynomial of degree $n+1$ in the entries of Λ. This leads to

Conjecture

Any finite type invariant of degree d of 3-manifolds (with an appropriate normalization) is a polynomial of degree at most $n+d$ in the entries of Λ.

Θ-invariant of 3-manifolds

Remark

Instead of counting maps $\phi: \Theta \rightarrow G$, we may count Θ-subgraphs of G, taking symmetries into account:

Example

For the (negatively oriented) Poincare homology sphere one has $G=\begin{array}{lll}3 & 2 & 5 .\end{array}$ Thus $\Lambda=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right), \operatorname{det} \Lambda=-1$ (so M is a \mathbb{Z}-homology sphere), $\operatorname{sign}(\Lambda)=0$, and to compute $\Theta(G)$ we count $2 \cdot(\mathbf{O} \leftrightharpoons \mathbf{0})+(\mathbf{8} \bullet+\bullet \mathbf{8})+2 \cdot$ to get $\Theta(G)=2 \cdot\left(1 \cdot 2^{2}+3 \cdot 2^{2}\right)+\left(1^{2}+2\right)(-3)+\left(3^{2}+2\right)(-1)+2 \cdot\left(2^{3}-2\right)=24$ and obtain $\lambda_{C W}(M)=-2$.

Counting cycle-rooted trees

Recall that the matrix Λ was defined as the graph Laplacian for the weight matrix W :

$$
l_{i j}= \begin{cases}w_{i j}, & i \neq j \\ d_{i i}-\sum_{k=1}^{n} w_{i k}, & i=j\end{cases}
$$

An expression for $\Theta(M)$ in terms of the original weight matrix W (with $d_{i i}$ on the diagonal) is even simpler and can be achieved by a certain generalized version of the celebrated Matrix Tree Theorem.
For this purpose, we add to G a new balancing "super-vertex" v_{0}, connecting every vertex v_{i} of G to v_{0} by an edge of the weight $w_{0 i}=-d_{i i}$. We also change weights of all old vertices to 0 to get a balanced graph \widehat{G} :

Counting cycle-rooted trees

The classical Matrix Tree Theorem states that $\operatorname{det} \Lambda$ equals to the weighted number of the spanning trees of \widehat{G}, where a tree T is counted with the weight $\prod_{e \in T} w(e)$.
It turns out, that one can pass from $\Theta(G)$ to a similar count of spanning cycle-rooted trees in \widehat{G} :

in G, with Λ-weights

in \widehat{G}, with W-weights

This approach has a number of interesting applications and ramifications:

- Simpler computational formulas: no more degenerated cases, simpler graphs.
- Counting spanning cycle-rooted trees in \widehat{G} to get $\Theta(G)$ leads to a new generalized version of the classical theorem Matrix Tree Theorem.

Cycle-rooted trees and orbits of vector fields

Finally, cycle-rooted trees can be interpreted as closed orbits of vector fields on a graph:
A discrete vector field on a graph is a choice of at most one outgoing edge at each vertex.

Critical vertices are those with no outgoing edges. An orbit may end in a critical point - these are trees with roots in critical points (and all edges oriented toward the root).
There are also closed orbits; these are cycle-rooted trees (with all edges oriented towards the cycle).
In these terms, the determinant det Λ counts vector fields on G with no closed orbits. The Θ-invariant counts vector fields with one closed orbit.

Cycle-rooted trees and orbits of vector fields

Time for speculations:

There is a highly suggestive continuous analogue for such a closed orbits counting: Gopakumar-Vafa's Gauge Theory/Geometry duality between the CS theory and closed strings on a resolved conifold. The closed strings theory suggested by Gopakumar-Vafa leads to a certain Floer-type symplectic homology setup.
It seems that in our discrete setting Gopakumar-Vafa duality boils down to the Laplace transform on graphs and corresponds to a generalized Matrix Tree Theorem.
We thus expect that there is a suitable chain complex and a homology theory in the cycle-rooted trees setup. Its construction is challenging.

"ON THE OTAER HAND MY RESPONSIBIUTY To SOCIETY MAKES ME WANT TO STOP RIGIHT HERE."

