From 3-manifolds to planar graphs and cycle-rooted trees

Michael Polyak

Technion

November 27, 2014

"CONFIRMING THE BELIEF THAT MUSICAND MATH ARE RELATED, I WILL NOW SING SOME LOVELY FRENCH EQUATIONS."

Outline

- Encode 3-manifolds by planar weighted graphs
- Pass from various presentations of 3-manifolds to graphs and back
- Similar encodings for related objects: links in 3-manifolds, manifolds with *Spin-* or *Spin^c*-structures, elements of the mapping class group, etc.
- Encoding is not unique: finite set of simple moves on graphs (related to electrical networks)
- Various invariants of 3-manifolds transform into combinatorial invariants
- \bullet Configuration space integrals \rightarrow counting of subgraphs
- \bullet Low-degree invariants \rightarrow counting of rooted forests

Chainmail graphs

A chainmail graph is a planar graph G, decorated with \mathbb{Z} -weights:

- Each vertex v is decorated with a weight d(v); A vertex is balanced, if d(v) = 0 (can think about d(v) as a "defect" of v); a graph is balanced, if all of its vertices are.
- Each edge e is decorated with a weight w(e). A 0-weighted edge may be erased. Multiple edges are allowed. Two edges e₁, e₂ connecting the same pair of vertices may be redrawn as one edge of weight w(e₁) + w(e₂). Looped edges are also allowed; a looped edge may be erased.

From graphs to manifolds

Given a chainmail graph G with vertices v_i and edges e_{ij} , i, j = 1, 2, ..., n we construct a surgery link L as follows:

- vertex $v_i \rightarrow$ standard planar unknot L_i
- ± 1 -weighted edge $e_{ij} \rightarrow \pm 1$ -clasped ribbon linking L_i and L_j

Linking numbers and framings of components are given by a graph Laplacian matrix Λ with entries

$$I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^{n} w_{ik} , & i = j \end{cases}$$

From manifolds to graphs

It turns out, that

Theorem

Any (closed, oriented) 3-manifold can be encoded by a chainmail graph.

- Moreover, there are simple direct constructions starting from many different presentations of a manifold: surgery, Heegaard decompositions, plumbing, double covers of S^3 branched along a link, etc.
- Similar constructions work also for a variety of similar objects: links in 3-manifolds, 3-manifolds with *Spin-* or *Spin^c*-structures, elements of the mapping class group, etc.

Some info about M can be immediately extracted from G. In particular, M is a \mathbb{Q} -homology sphere iff det $\Lambda \neq 0$ and then $|H_1(M)| = |\det \Lambda|$; also, signature of M is the signature sign(Λ) of Λ .

Proofs and explicit constructions ...

... No time to present here.

Calculus of chainmail graphs

An encoding of a manifold by a chainmail graph is non-unique. However, there is a finite set of simple moves which allow one to pass from one chainmail graph encoding a manifold to any other graph encoding the same manifold. The most interesting moves are

They are related to a number of topics: Kirby moves, relations in the mapping class group, electrical networks and cluster algebras, and Reidemeister moves for link diagrams (via balanced median graphs) -

Chern-Simons theory leads to a lot of knot and 3-manifold invariants. Attempts to understand the Jones polynomial in these terms led to quantum knot invariants, the Kontsevich integral, configuration space integrals and other constructions. In particular,

Perturbative CS-theory $\xrightarrow{Feynman \ diagrams}$ Configuration space integrals

- Rather powerful: contain universal finite type invariants of knots and 3-manifolds
- Very complicated technically
- Extremely hard to compute

We expect a similar combinatorial setup in our case: An appropriate CS-theory on graphs $\xrightarrow{discrete}$ Discrete sums over subgraphs Types of subgraphs are suggested by the theory: uni-trivalent graphs for

links; trivalent graphs for 3-manifolds.

This actually works! Here is the setup: we pass from the manifold M to its combinatorial counter-part \rightarrow a chainmail graph G. In both cases we use summations over similar Feynman graphs.

- Vertices of a Feynman graph: configurations of *n* points in *M* → sets of *n* vertices in *G*
- Edges of a Feynman graph: propagators in M → paths of edges in G
- Integration over the configuration space \rightarrow sum over subgraphs
- Compactifications and anomalies due to collisions of points in $M \rightarrow$ appearance of degenerate graphs when several vertices merge together

Let's see this on an example of the simplest non-trivial perturbative invariant, corresponding to the Feynman graph with 2 vertices, i.e., the Θ -graph:

We count maps $\phi : \Theta \to G$ with weights and multiplicities. One can think about such a map as a choice of two vertices v_i and v_j of G, connected by 3 paths of edges which do not have any common internal vertices:

The weight $W(\phi)$ of ϕ is the product $L(\phi) \prod_{e \in \phi(G)} I_e$, where $L(\phi)$ is the minor of Λ , corresponding to all vertices of G not in $\phi(\Theta)$.

Degenerate maps should be counted as well. Such degeneracies appear when two vertices of the Θ -graph collide together to produce a figure-eight graph:

Diagonal entries of Λ also enter in the formula, when one lobe (or possibly both) of the figure-eight graph becomes a looped edge in the 4-valent vertex. The weight of such a loop in v_i is I_{ii} . E.g., for the map

we have $W(\phi) = L(\phi) \cdot I_{ij} \cdot I_{jk} \cdot I_{ki} \cdot I_{ii}$. In the most degenerate cases – a triple edge or double looped edge – weights need to be slightly adjusted.

"I think you should be more explicit here in step two."

Θ -invariant of 3-manifolds

Theorem

 $\Theta(G) = \sum_{\phi} W(\phi)$ is an invariant of M. If M is a Q-homology sphere (i.e., det $\Lambda \neq 0$), we have $\Theta(G) = \pm 12|H_1(M)|(\lambda_{CW}(M) - \frac{sign(M)}{\Lambda}))$, where $\lambda_{C}W(M)$ is the Casson-Walker invariant.

Conjecture

The next perturbative invariant can be obtained in a similar way by counting maps of \triangle and \bigcirc to G.

Note that $\Theta(G)$ is a polynomial of degree n+1 in the entries of Λ . This leads to

Conjecture

Any finite type invariant of degree d of 3-manifolds (with an appropriate normalization) is a polynomial of degree at most n + d in the entries of Λ .

Θ-invariant of 3-manifolds

Remark

Instead of counting maps $\phi: \Theta \to G$, we may count Θ -subgraphs of G, taking symmetries into account:

Example

Counting cycle-rooted trees

Recall that the matrix Λ was defined as the graph Laplacian for the weight matrix W:

$$I_{ij} = \begin{cases} w_{ij}, & i \neq j \\ d_{ii} - \sum_{k=1}^{n} w_{ik}, & i = j \end{cases}$$

An expression for $\Theta(M)$ in terms of the original weight matrix W (with d_{ii} on the diagonal) is even simpler and can be achieved by a certain generalized version of the celebrated Matrix Tree Theorem. For this purpose, we add to G a new balancing "super-vertex" v_0 , connecting every vertex v_i of G to v_0 by an edge of the weight $w_{0i} = -d_{ii}$. We also change weights of all old vertices to 0 to get a balanced graph \widehat{G} :

Counting cycle-rooted trees

The classical Matrix Tree Theorem states that det Λ equals to the weighted number of the spanning trees of \hat{G} , where a tree T is counted with the weight $\prod_{e \in T} w(e)$.

It turns out, that one can pass from $\Theta(G)$ to a similar count of spanning cycle-rooted trees in \widehat{G} :

This approach has a number of interesting applications and ramifications:

- Simpler computational formulas: no more degenerated cases, simpler graphs.
- Counting spanning cycle-rooted trees in \widehat{G} to get $\Theta(G)$ leads to a new generalized version of the classical theorem Matrix Tree Theorem.

Finally, cycle-rooted trees can be interpreted as closed orbits of vector fields on a graph:

A discrete vector field on a graph is a choice of at most one outgoing edge at each vertex.

Critical vertices are those with no outgoing edges. An orbit may end in a critical point - these are trees with roots in critical points (and all edges oriented toward the root).

There are also closed orbits; these are cycle-rooted trees (with all edges oriented towards the cycle).

In these terms, the determinant det Λ counts vector fields on G with no closed orbits. The Θ -invariant counts vector fields with one closed orbit.

Time for speculations:

There is a highly suggestive continuous analogue for such a closed orbits counting: Gopakumar-Vafa's Gauge Theory/Geometry duality between the CS theory and closed strings on a resolved conifold. The closed strings theory suggested by Gopakumar-Vafa leads to a certain Floer-type symplectic homology setup.

It seems that in our discrete setting Gopakumar-Vafa duality boils down to the Laplace transform on graphs and corresponds to a generalized Matrix Tree Theorem.

We thus expect that there is a suitable chain complex and a homology theory in the cycle-rooted trees setup. Its construction is challenging.

"ON THE OTHER HAND, MY REPRONSIBILITY TO SOCIETY MAKES ME WANT TO STOP RIGHT HERE."