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Abstract. Hopf’s Umlaufsatz relates the total curvature of a closed
immersed plane curve to its rotation index. While the curvature of
a curve changes under local deformations, its integral over a closed
curve is invariant under regular homotopies. A natural question is
whether one can find some natural densities on a curve, such that
the corresponding integrals are (possibly after some corrections) also
invariant under regular homotopies of the curve. We construct a
family of such densities using indices of points relative to the curve.
The corresponding generating function in a formal variable q may be
considered as a quantization of the total curvature. The linear term
in the Taylor expansion at q = 1 coincides, up to a normalization,
with Arnold’s J+ invariant.

Let Γ be a closed oriented immersed plane curve Γ : S1 → R2. One
of the fundamental notions related to Γ is its curvature κ. Another
important notion is that of a rotation index rot(Γ), i.e. the number of
turns made by the tangent vector as we follow Γ along its orientation.

Hopf’s Umlaufsatz [2] is one of the simplest versions of the Gauss-
Bonnet theorem and one of the fundamental theorems in the theory
of plane curves. It relates two different types of data: local geometric
characteristic of a plane curve – its curvature κ – and a global topological
characteristic – its rotation index rot(Γ). Although the curvature of a
plane curve changes under local deformations, the theorem states that
its average (integral) over a closed curve is invariant under homotopies
in the class of immersed curves:

Theorem 1 (Hopf’s Umlaufsatz).

(1)
1

2π

∫
S1
κ(t) dt = rot(Γ)

A natural question is whether one can find some natural densities

ρ on Γ such that the average Iρ(Γ) =

∫
S1
κ(t)ρ(t) dt is (possibly after
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some corrections) also invariant under local deformations of Γ. Since the
rotation index is (up to normalization) the only invariant of Γ in the
class of immersed curves, we cannot expect Iρ(Γ) to remain invariant
under arbitrary homotopies. We can hope, however, that the result is
invariant under regular homotopies. Here by a regular homotopy we mean
homotopy in the class of generic immersions, i.e. immersions with a finite
set X of transversal double points as the only singularities. Invariants
of such a type were originally introduced by Arnold [1] and include the
celebrated J± and St invariants (see [1] for details).

We construct a family of such densities using the index indp(Γ) of Γ
relative to a point p. Given p ∈ R2 rΓ, we define indp(Γ) as the number
of turns made by the vector pointing from p to Γ(t), as we follow Γ along
its orientation. This defines a locally-constant function on R2 r Γ. See
Figure 1a. Suppose that Γ is generic. Then we can extend indp(Γ) to a
1
2
Z-valued function on R2. To define indp(Γ) for p ∈ Γ, average its values

on the regions adjacent to p – two regions if p is a regular point of Γ, and
four regions if p is a double point of Γ. See Figure 1b. For each double
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Figure 1. Indices of points and a smoothing of a double
point.

point d = Γ(t1) = Γ(t2) ∈ X, define θd ∈ (0, π) as the (non-oriented)
angle between two tangent vectors Γ′(t1) and −Γ′(t2). For q ∈ Rr {0},
define Iq(Γ) ∈ R[q 1

2 , q−
1
2 ] by

(2) Iq(Γ) =
1

2π

(∫
S1
κ(t) · qindΓ(t)(Γ) dt−

∑
d∈X

θd · qindd(Γ)(q
1
2 − q−

1
2 )

)
Theorem 2. Iq(Γ) is invariant under regular homotopies of Γ.

Proof. Note that we can generalize all above notions and formulas to the
case of a multi-component curve Γ : tnS1 → R2 by a summation of the
appropriate indices over the components of Γ.

Let us smooth the original curve Γ in each double point respecting the

orientation to get a multi-component curve Γ̃ = ∪nΓ̃n without double

points. Then values of Iq on Γ and Γ̃ differ by an easily computable
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factor, which depends only on the regular homotopy class of Γ. Indeed,
consider a small neighborhood Ud of a double point d of index i, see

Figure 1c. Under smoothing of d, the total curvature of Γ̃∩Ud differs from
that of Γ∩Ud by ±(π− θd) for the fragment with index i± 1

2
, see Figure

1c. Thus the integral part of Iq changes by
1

2π
(π−θd)(q

i+ 1
2 −qi−

1
2 ). Also,

the double point d contributes − 1

2π
θdq

i(q
1
2 − q−

1
2 ) to Iq(Γ). Smoothing

removes d, so this summand disappears from Iq(Γ̃). Thus, the total

change of Iq under smoothing of d equals
1

2
qi(q

1
2 − q−

1
2 ). Hence

Iq(Γ) = Iq(Γ̃)−
1

2

∑
d

qindd(Γ)(q
1
2 − q−

1
2 ) .

Since
∑

d q
indd(Γ)(q

1
2 − q−

1
2 ) is invariant under regular homotopies of Γ,

it remains to prove the invariance of Iq(Γ̃) =
∑

n Iq(Γ̃n).

Note that indΓ̃(t)(Γ̃) is constant on each component Γ̃n of Γ̃, so

Iq(Γ̃n) =
1

2π

∫
S1
κn(t) · qindΓ̃n(t)

(Γ̃) dt = qindΓ̃n(t)
(Γ̃) 1

2π

∫
S1
κn(t) dt

and by Umlaufsatz (1) we get Iq(Γ̃n) = ± qindΓ̃n(t)
(Γ̃), depending on

rot(Γ̃n) = ±1. Thus, Iq(Γ̃n) is invariant under regular homotopies of

Γ̃. But a regular homotopy of Γ induces a regular homotopy of Γ̃ and
the theorem follows.

�
Any two immersions with the same rotation number can be connected

by regular homotopy and a finite sequence of self-tangency and triple-
point modifications, shown in Figure 2. Depending on orientations and

Figure 2. Self-tangency and triple-point modifications.

indices of adjacent regions, one can distinguish several types of these
modifications. Self-tangencies can be separated into direct and opposite,
shown in Figure 3a and 3b respectively. An index of a self-tangency mod-
ification is the index of two new-born double points (e.g., modifications
in Figure 3 are of index i). Triple-point modifications can be separated
into weak (or acyclic) and strong (or cyclic), shown in Figure 4a and 4b
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respectively. An index of a triple-point modification1 is the minimum of
indices of double points involved in this modification (e.g., modifications
in Figure 4 are of index i).
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Figure 3. Direct and opposite self-tangency modifica-
tions of index i.
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Figure 4. Weak and strong triple-point modifications of
index i.

Invariants of regular homotopy are uniquely determined by their be-
havior under these modifications, together with normalizations on stan-
dard curves Ki of rot(Ki) = i, i = 0,±1,±2, . . . shown in Figure 5.
Basic invariants J± and St of (regular homotopy classes of) generic plane

K−1 K K K K0 1 2 3K−2

Figure 5. Standard curves of indices 0,±1,±2, . . . .

curves were introduced axiomatically by Arnold [1]. In particular, J+ is
uniquely determined by the following axioms:

• J+ does not change under an opposite self-tangency or triple-
point modifications.

• Under a direct self-tangency modification which increases the
number of double points, J+ jumps by 2.

1Our indices of modifications differ from the ones of [3] by an −1 shift.
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• On the standard curves Ki we have J+(K0) = 0 and J+(Ki) =
−2(|i| − 1) for i = ±1,±2, . . . .

In a similar way, Iq(Γ) is uniquely determined by the following

Theorem 3. The invariant Iq(Γ) satisfies the following properties:

• Iq(Γ) does not change under opposite self-tangencies.
• Under direct self-tangencies of index i, the invariant Iq(Γ) jumps

by −qi(q
1
2 − q−

1
2 ).

• Under (both weak and strong) triple-point modifications of index

i, Iq(Γ) jumps by −1
2
qi+

1
2 (q

1
2 − q−

1
2 )2.

• We have Iq(−Γ) = −Iq−1(Γ), where −Γ denotes Γ with the oppo-
site orientation.

• On the standard curves Ki we have Iq(K0) =
1

2
(q

1
2 − q−

1
2 ) and

Iq(Ki) =
1

2
(i− 1) q

3
2 +

1

2
(i+ 1) q

1
2 for i = 1, 2, . . .

Proof. A straightforward computation verifies both the behavior of Iq(Γ)
under self-tangencies and triple-point modifications and its values on the
curves Ki. To verify the behavior of Iq(Γ) under an orientation rever-
sal, note that indp(−Γ) = − indp(Γ), which corresponds to the involu-
tion q → q−1 in terms qindΓ(t)(Γ) and qindd(Γ) of (2). Also, both terms
in (2) change signs: the integral due to the change of parametriza-

tion, and the sum over double points due to the equality q
1
2 − q−

1
2 =

−
(
(q−1)

1
2 − (q−1)−

1
2

)
. �

Substituting q = 1 into (2), we readily obtain I1(Γ) =
1
2π

∫
S1 κ(t) dt =

rot(Γ) and recover the classical Hopf Umlaufsatz, see Theorem 1. In
this sense, invariant Iq may be considered as a quantization of the total
curvature (1). Let us study the next term I ′1(Γ) of the Taylor expansion
of Iq(Γ) at q = 1. From (2) we immediately get

I ′1(Γ) =
1

2π

(∫
S1
κ(t) · indΓ(t)(Γ) dt−

∑
d∈X

θd

)
.

Proposition 4. I ′1(Γ) can be identified with Arnold’s J+ invariant via
I ′1(Γ) =

1
2
(1− J+(Γ)).

Proof. Indeed, note that by Theorem 2, I ′1(Γ) is invariant under homo-
topies of Γ in the class of generic immersions. Differentiating at q = 1
expressions for jumps of Iq(Γ) in Theorem 3 we immediately conclude
that I ′1(Γ) is invariant under opposite tangencies and triple-point modi-
fications. Moreover, under direct tangencies, I ′1(Γ) jumps by −1. Thus
its behavior under all modifications is the same as that of −1

2
J+(Γ) (up



6 SERGEI LANZAT AND MICHAEL POLYAK

to an additive constant depending on rot(Γ)). A straightforward com-
putation shows that I ′1(Γ) takes values I

′
1(K0) =

1
2
and I ′1(Ki) = |i| − 1

2
for i = ±1,±2, . . . on the standard curves Ki. Thus the proposition
follows. �
Remark 5. An infinite family of invariants, called “momenta of index”
Mr together with their generating function PΓ(q) ∈ Z[q, q−1] were intro-
duced by Viro in [3, Section 5]. A careful check of their behavior under
self-tangencies and triple-point modifications, together with their values
on the standard curves Ki, allow one to relate PΓ(q) to Iq(Γ) as follows:

PΓ(q) = (q
1
2 − q−

1
2 )Iq(Γ) + 1 +

1

2

∑
d∈X

qindd(Γ)(q
1
2 − q−

1
2 )2
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