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Abstract. The classical Whitney formula relates the number of times an

oriented plane curve cuts itself to its rotation number and the index of a base
point. In this paper we generalize Whitney’s formula to curves on an oriented
punctured surface Σm,n, obtaining a family of identities indexed by elements

of π1(Σm,n). To define analogs of the rotation number and the index of a base
point of a curve γ, we fix an arbitrary vector field on Σm,n. Similar formulas
are obtained for non-based curves.

1. Introduction

In this paper we study self-intersections of smooth immersed curves on an ori-
ented surface Σ = Σm,n of genus m with n punctures. Fix p ∈ Σ and denote
π = π1(Σ, p). We will consider immersions γ : [0, 1] → Σ with γ(0) = γ(1) = p and
γ ′(0) = γ ′(1) — we call them closed curves with the base point p. Throughout the
paper, all curves are assumed to be generic, i.e. their only singularities are double
points of transversal self-intersection, distinct from p.

1.1. Self-intersections of an immersed curve. Let γ be a closed curve and
d be its self-intersection d = γ(u) = γ(v), u < v. Define sgn(d) = +1 if the
orientation of the basis (γ ′(u), γ ′(v)) coincides with the one prescribed by the
orientation of Σ, and sgn(d) = −1 otherwise, see Figure 1a. Turaev [7] constructed
an important element of the group ring Z[π] corresponding to γ, in the following
way. Let τd(γ) ∈ π be the homotopy class of a loop γ(t) with t ∈ [0, u] ∪ [v, 1].
Denote D(γ) the set of double points of γ and define the element 〈γ〉 ∈ Z[π] by

(1) 〈γ〉 =
∑

d∈D(γ)

sgn(d)τd(γ).

In particular, for a curve on Σ = R
2 one has Z[π] = Z so 〈γ〉 =

∑
d∈D(γ) sgn(d) ∈ Z.

Example 1. Let Σ = Σ0,2 = R
2

r {0} and denote by g the generator of π (rep-
resented by a small loop around 0). For a curve γ shown in Figure 2a we have
〈γ〉 = g2 − g; signs of self-intersections and the corresponding curves τd are shown
in Figure 2b.
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For a curve γ on Σ = R
2 one may define its Whitney index (or winding number)

w(γ) as the number of full rotations made by the tangent vector γ ′(t) around the
origin, as t moves from 0 to 1.

For a curve γ on Σ = R
2 and x ∈ R

2
r γ one can also define ind(γ, x) as the

number of times the curve γ circles around x. In other words, it is the linking
number of a 1-cycle [γ] with the 0-chain [∞]− [x] (composed of a point near infinity
taken with the positive sign and x taken with the negative sign). It can be calculated
as the intersection number of the curve γ with any ray starting in x and going to
infinity. If γ is a plane curve with a base point p, we define ind(γ, p) ∈ 1

2Z by

averaging the values of ind on two components of R
2

r γ adjacent to p.
H. Whitney in [8] considered closed curves with a base point on Σ = R

2 and
showed that

Theorem 2 ([8]). Let γ : [0, 1] → R
2 be a generic immersed curve with the base

point p = γ(0) = γ(1). Then

(2) 〈γ〉 = −w(γ) + 2 ind(γ, p).
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Figure 1. Signs of self-crossings and some simple curves on R
2.

Example 3. For a curve γ shown on Figure 1b we have 〈γ〉 = +1, w(γ) = 2, and
ind(γ, p) = 3/2. For a curve γ shown on Figure 1c we have 〈γ〉 = +1 − 1 = 0,
w(γ) = 1, and ind(γ, p) = 1/2.

1.2. Curves on surfaces. The main results of this paper are generalizations of
Theorem 2 for curves on surfaces. We define appropriate surface versions of expres-
sions in both sides of (2) and relate them.

To define an analog of the Whitney index for a curve γ : S1 → Σ, we fix a
vector field X on Σ having no zeros on the curve γ. Define, following [2, 5] w(γ,X)
to be the number of rotations of γ ′(t) relative to X. It can be calculated as the
algebraic number of points in which γ ′(t) looks in the direction of X; each such
point is counted with a positive sign, if γ ′ turns counter-clockwise relative to X
in a neighborhood of γ(t) and with a negative sign otherwise. It is clear that
w(γ,X) does not change under the homotopies of γ and X (as long as γ stays an
immersion and X has no zeros on its image). Define the Whitney index of γ as

w(γ,X)
def
= w(γ,X)[γ] ∈ Z[π] where [γ] is the class of homotopy represented by the

curve γ.

Remark. The integer w(γ,X) depends on the field X. Nevertheless, if X has
no zeros, the residue w(γ,X) (mod χ)(Σ) depends only on γ and can be defined
without the use of X, see e.g. [3].
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In particular, if Σ = Σ0,1 = R
2 and X = ∂

∂x
is a horizontal vector field directed

from left to right, then π is trivial and w(γ,X) = w(γ) is the usual Whitney index
of γ.
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Figure 2. A curve on a punctured plane and a radial vector field.

Example 4. Let’s return to Example 1. Let X = f(x, y)(x ∂
∂x

+ y ∂
∂y

) be a radial

vector field on Σ = Σ0,2 = R
2

r {0}; the function f(x, y) > 0 is chosen so that
the field X is smooth. One may check that w(γ,X) = (w(γ)− k)gk, where w(γ) is
the usual Whitney index of γ, k is the number of times γ circles around {0}, and
g is the generator of π = π1(R

2
r {0}). In particular, for the curve γ shown on

Figure 2a, the number of rotations of γ ′ relative to X is −1 (indeed, there is only
one tangency point of X with γ, denoted by a in Figure 2c; its sign is −1). Also,
[γ] = g2, thus w(γ,X) = −g2.

The results obtained in this article generalize those of the papers [4] and [1]
where the curves on Σ0,1 = R

2 and Σ1,0 = T
2 were considered; the methods we use

are similar to those of [1].
We consider both curves with a base point (Theorem 5), and curves without base

points (Theorem 9). Both theorems are proved by similar methods, so we collected
all proofs in Section 4.

2. Curves with base points

2.1. Making loops from pieces. For two generic paths γi : [ai, bi] → Σ, i = 1, 2
with γ1(a1) = γ2(b2) = p we may define an element similar to (1) as follows. Let
d = γ1(u) = γ2(v) be an intersection point of γ1 and γ2, with u 6= a1, b1, v 6= a2, b2.
Again, define sgn(d) = +1 if the orientation of the basis (γ ′

1(u), γ ′
2(v)) coincides

with the one prescribed by the orientation of Σ, and sgn(d) = −1 otherwise. Let
τd(γ1, γ2) ∈ π be the homotopy class of a loop composed of two arcs: γ1(t1) with
t1 ∈ [a1, u], and γ2(t2) with t2 ∈ [v, b2], see Figure 3a.

Denote by D(γ1, γ2) the set of intersections of γ1 and γ2 and define

(3) 〈γ1, γ2〉 =
∑

d∈D(γ1,γ2)

sgn(d)τd(γ1, γ2).

2.2. Intersections and τ-indices. Let X be a vector field on the surface Σ.
Throughout the paper, we will assume that every trajectory of X is infinitely ex-
tendable, so a one-parametrical group Φt of diffeomorphisms generated by X is
well-defined. Denote by Φ(a) its integral trajectory starting at the point a ∈ Σ.
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Figure 3. Making a loop out of two and three pieces.

Given X, we generalize formula (1) as follows. Let γ : [0, 1] → Σ be a generic
immersed curve with the base point p = γ(0) = γ(1). Fix T > 0 such that
Φ±T (p) /∈ γ. Denote by Φ− and Φ+ the negative (resp. positive) T -time semi-
trajectories Φt(p), t ∈ [−T, 0] (resp. t ∈ [0, T ]) of the base point p.

Define the T -time index of p with respect to γ by

(4) indT (γ, p) =
1

2

(
〈γ,Φ−〉 + 〈Φ+, γ〉

)
∈

1

2
Z[π]

Denote by γT : [0, 1] → Σ a T -shift of γ along X: γT (t) = ΦT (γ(t)). Suppose
that X does not vanish on γ and all the intersections of γT with γ are transversal
double points d = γT (u) = γ(v). Define sgn(d) = +1 if the orientation of the basis
(γ ′

T (u), γ ′(v)) coincides with the orientation of Σ, and sgn(d) = −1 otherwise. Let
τd,T (γ) ∈ π be the homotopy class of a loop composed of three arcs: γ(t1) with
t1 ∈ [0, u], Φt2(γ(u)) with t2 ∈ [0, T ], and γ(t3) with t3 ∈ [v, 1], see Figure 3b.

Between all such intersection points d pick only the ones with u < v; denote this
set by DT (γ). Define the element 〈γ〉T ∈ Z[π] by

(5) 〈γ〉T =
∑

d∈DT (γ)

sgn(d)τd,T (γ).

In particular, for a curve on Σ = R
2 one has Z[π] = Z so 〈γ〉T ∈ Z.

For a small T = ε intersections γ(u) = γε(v) appear near double points of γ and
near points in which γ is tangent to X (the condition u < v means in this case
that the tangent vector should be directed in the direction of X). After checking
the signs, we see that the contribution of double points to 〈γ, γε〉 equals 〈γ〉, while
the contribution of points in which γ is tangent to X equals w(γ,X) (recall that
we consider w(γ,X) as a multiple of the class [γ]) and thus obtain

(6) 〈γ〉ε = 〈γ〉 + w(γ,X)

Theorem 5. Let γ : [0, 1] → Σ be a generic immersed curve with the base point

p = γ(0) = γ(1). Let X be a vector field which does not vanish on γ and is

transversal to γ at the base point p. Suppose that T > 0 is such that all intersections

of γ with γT are transversal double points distinct from p. Then

(7) 〈γ〉 = 〈γ〉T − w(γ,X) + 2 indT (γ, p).

Remark. For a small T = ε we have indε(γ, p) = 0 and 〈γ〉ε is given by (6), so in
this case equality (7) is trivial.
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Example 6. Let Σ = Σ0,1 = R
2 and X = ∂

∂x
be a horizontal vector field directed

from left to right. Here π is trivial, and w(γ,X) = w(γ) is the usual Whitney index
of γ. For a large T , γT is shifted far from γ, so 〈γ〉T = 0. Also, indT (γ, p) counts
intersections of γ with both horizontal rays emanating from p to the left and to the
right. So it equals to the index ind(γ, p) of the base point, introduced in Section
1.1. Equation (7) turns in this case into the classical Whitney’s formula (2).

Example 7. Let’s return to Example 4. For a large T the curve γT is shifted far
from γ, so 〈γ〉T = 0. The curve γ shown in Figure 2a has no intersections with
Φ+, and only one intersection with Φ−, denoted by b in Figure 2c; its sign is −1.
The corresponding curve τb is depicted there in bold. It represents a class g, thus
2 indT (γ, p) = −g. This agrees with 〈γ〉 + w(γ,X) = (g2 − g) − g2 = −g.

2.3. Formula for an infinite time shift. Let us consider the behavior of formula
(7) when T → ∞.

Proposition 8. Let γ : [0, 1] → Σ be a generic immersed curve with the base point

p = γ(0) = γ(1). Let X be a vector field which does not vanish on γ. Suppose that

the trajectory Φ(p) of the base point intersects γ only in a finite number of points.

Then limits ind(γ, p) = lim
T→∞

indT (γ, p) and 〈γ〉∞ = lim
T→∞

〈γ〉T are well defined and

satisfy

(8) 〈γ〉 = 〈γ〉∞ − w(γ,X) + 2 ind(γ, p).

Proof. By the assumption, Φ(p) intersects γ in a finite number of points Φti
(p),

i = 1, 2, . . . , k with t1 < t2 < · · · < tk. Thus when T > max(−t1, tk), the index
indT (γ, p) does not change and limT→∞ indT (γ, p) is well-defined.

Now the statement follows from Theorem 5. Indeed, note that in addition to
indT (γ, p), only one term in equation (7) depend on T , namely 〈γ〉T . Since equation
(7) is satisfied for any T , we conclude that 〈γ〉T also does not change when T >
max(−t1, tk). Therefore, limT→∞〈γ〉T is also well-defined. Since the equality (7)
holds for any T , it is satisfied also in the limit T → ∞. ¤

Remark. As an example of how γT behaves as T → ∞ consider Σ = Σm,0 and
let X be a gradient vector field of a (general position) Morse function on Σ. This
vector field has 2g + 2 zeros corresponding to 2g saddle points, one maximum, and
one minimum of the function. Critical points of neighboring indices are connected
by trajectories of X, called separatrices. See Figure 4. Each saddle point qi,
i = 1, . . . , 2g, is joined to the maximum by a pair of separatrices, making a loop li.
Homotopy classes of the loops l1, . . . , l2g form a system of generators in π.

As T → ∞, the curve γT is attracted into a neighborhood of l1∪· · ·∪ l2g. So one
can calculate 〈γ〉∞ in another way, using intersections of γ with the separatrices.

This method of calculating 〈γ〉∞ may be applied to a wider class of vector fields
as well. Separatrices of a field are then trajectories which bound regions of different
dynamics of the flow on Σ. Under appropriate assumptions on the field the curve
γT is attracted, as T → ∞, into a neighborhood of the union of separatrices.
Therefore 〈γ〉∞ may be calculated from the intersections of γ with them. However,
for a general vector field this approach involves a number of technicalities and
requires a lengthy treatment, so we omit it here.
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Figure 4. Separatrices of a gradient field.

3. Curves without base points

Our goal is to repeat all constructions of Section 2 for curves without base points.
In all formulas we will be using now free loops instead of based loops; denote by Ω
the loop space of Σ. Let γ : S1 → Σ be an oriented curve without a base point; we
are to define an appropriate analogue of 〈γ〉 in this case. Let d be a self-intersection
of γ. Smoothing γ in d with respect to the orientation, we obtain two closed curves:
γl

d and γr
d, where the tangent vector of γl

d rotates clockwise in the neighborhood of
d, and that of γr

d rotates counter-clockwise. See Figure 5a. Denote D(γ) the set of
double points of γ and define 〈g〉 ∈ Z[Ω] by

〈γ〉 =
∑

d∈D(γ)

([γl
d] − [γr

d]).

d
T

T

γ

d

γd
l γ r

d
γ

γ(u)

(v)γ

γΦ

a b

Figure 5. Smoothing a crossing and constructing loops from pieces

Define the Whitney index in the non-based case as w(γ,X)
def
= w(γ,X)([γ]−1) ∈

Z[Ω] where 1 is the class of the trivial loop, and w(γ,X) is, like for pointed curves,
the number of full rotations of γ ′(t) relative X. (Note that the definition of w(γ,X)
does not require the base point.)

The definition of 〈γ〉T remains almost the same as in Section 2.2, with few
straightforward changes. Namely, we drop the requirement that u < v when we
consider intersection points d = γ(v) = γT (u) of γ with γT , and the corresponding
loop τd,T (γ) consists of just two arcs: a piece of γ parameterized by the arc vu of
the circle, and Φt(γ(u)) for 0 ≤ t ≤ T . See Figure 5b (the loop τd,T (γ) is shown in



WHITNEY’S FORMULAS FOR CURVES ON SURFACES 7

bold). The following theorem is an analogue of Theorem 5 for curves without base
points:

Theorem 9. Let γ : S1 → Σ be a generic immersed curve without the base point.

Let X be a vector field on Σ which does not vanish on γ. Suppose that T > 0 is

such that all intersections of γ with γT are transversal double points. Then

(9) 〈γ〉 = 〈γ〉T − w(γ,X).

Thus 〈γ〉 provides a simple obstruction for pushing a curve off itself:

Corollary 10. Let γ be a generic curve on Σ. If 〈γ〉 /∈ Z[[γ] − 1] ⊂ Z[Ω] then the

curve γ cannot be pushed off itself by a flow of vector field, i.e. any shifted copy γT

intersects the initial curve γ.

Example 11. Let Σ = Σ0,3 be a doubly-punctured plane and γ be a figure-eight
curve with lobes going around the punctures of Σ. Then γ cannot be pushed off
itself.

Note also that the only term in formula (9), which depends on T , is 〈γ〉T . Thus
it is, in fact, independent of T and different values of T give the same value of 〈γ〉T .

4. Proofs of Theorems 5 and 9

4.1. Idea of the proofs. The main idea is rather simple. We interpret both sides
of the formula (7) as two different ways to compute an intersection number of two
2-chains in a 4-manifold. Very roughly speaking, the manifold is Σ × Σ and two
chains are {(γ(u), γ(v)) | 0 ≤ u ≤ v ≤ 1} and the diagonal {(x, x) | x ∈ Σ}. Their
intersection is the left part of the formula (the sum of signs of double points). The
same intersection number can be also computed by intersecting the boundary of
the first chain with a 3-chain, constructed by homotopy {(x,Φt(x)) | 0 ≤ t ≤ T}
of the diagonal. This comprises the right hand side of the formula. The reality
is somewhat more complicated so some technicalities are involved. In particular,
to split the formula by homotopy classes τ ∈ π we have to work in the universal

covering space Σ̃ of Σ. Also, to push the boundary of the first chain off the diagonal,
we take a certain ε cut-off. Theorem 9 is completely similar, except that we use
a slightly different configuration space. We treat the case of Theorem 5 in details
and indicate modifications needed for Theorem 5.

4.2. Configuration spaces. Denote by Σ̃ the set of homotopy classes of paths

ξ : [a, b] → Σ such that ξ(a) = p ; Σ̃ is a universal covering space for Σ and

inherits its orientation. The projection proj : Σ̃ → Σ maps a path ξ into its final

point ξ(b). The vector field X can be lifted to the vector field X̃ on Σ̃ such that

proj(Φ̃(a)) = Φ(proj(a)), where Φ̃ means the trajectory of X̃.
Consider a configuration space C = {(u, v) | 0 < u < v < 1} of (ordered) pairs

of points on [0, 1]. To compactify C, we pick a small ε > 0 and take an ε-cut-off:

Cε = {(u, v) | ε ≤ u < u + ε ≤ v ≤ 1 − ε} ⊂ C.

Note that apart from compactifying C, the condition u + ε ≤ v used in this cut-off
allows us to push the boundary of Cε off the diagonal u = v. Topologically, Cε

is a closed 2-simplex, whose boundary consists of three intervals, on which u = ε,
v = 1 − ε, and u + ε = v, respectively.
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The curve γ defines an evaluation map ev : C → Σ × Σ, ev(u, v)
def
= (γ(u), γ(v))

— we forget the curve itself and leave only the two marked points. For a fixed class

τ ∈ π define evτ : Cε → Σ̃ × Σ̃ by

evτ : (u, v) 7→ (ξ1, ξ2)

where ξ1 is an arc γ(t) with t ∈ [0, u] (so its final point is γ(u)) and ξ2 is made of the
loop τ followed by an arc γ(1 − t) with t ∈ [0, 1 − v] (so its final point is γ(v)), see
Figure 6. From the definition of evτ we immediately get proj ◦ evτ (u, v) = ev(u, v),
so evτ is a lift of the evaluation map.

p

τ

p

τ

ξ1

p

τ

ξ2

γ(u)

γ

(v)γ

γ(u)

γ

(v)γ

γ(u)

γ

(v)γ

Figure 6. Lifting the evaluation map

The diagonal

∆ = {(x, x) | x ∈ Σ̃}

is a proper 2-dimensional submanifold of Σ̃ × Σ̃, which inherits the orientation of

Σ̃ (as the image of the map x 7→ (x, x)). For a sufficiently small ε the intersection
number I(evτ (Cε),∆) of the image of Cε with ∆ is well-defined and independent
of ε, since evτ (Cε) is oriented, compact, and its boundary does not intersect ∆.

Denote by 〈γ〉τ the coefficient of τ in 〈γ〉, see (1).

Lemma 12. We have I(evτ (Cε),∆) = 〈γ〉τ

Proof. Indeed, a pair (u, v) gives an intersection point of evτ (Cε) with ∆ iff the
homotopy classes of paths ξ1 and ξ2 coincide, i.e., endpoints γ(u) and γ(v) of these
paths coincide and the homotopy class of ξ−1

2 ◦ ξ1 is trivial. This means that
d = γ(u) = γ(v) is a self-intersection point of γ and the homotopy class of the
loop γ(t) with t ∈ [0, u] ∪ [v, 1] equals to τ . The local intersection sign is easy to
compute and a direct check assures that orientations of evτ (Cε) and ∆ give the

positive orientation of Σ̃ × Σ̃ iff sgn(d) = +1. ¤

Consider the 2-chain ∆T
def
= {(x, Φ̃T (x)) | x ∈ Σ̃}. The homotopy WT =

{(x, Φ̃t(x)) | 0 ≤ t ≤ T} is a 3-chain such that ∂WT = ∆T − ∆. Denote I the
intersection number, so that one has

(10) I(evτ (Cε),∆) = I(evτ (Cε),∆T ) − I(evτ (∂Cε),WT )

Denote by 〈γ〉τT the coefficient of τ in 〈γ〉T , see (5).

Lemma 13. We have I(evτ (Cε),∆T ) = 〈γ〉τT

The proof repeats the proof of Lemma 12 above.
In view of (10) it remains to compute I(evτ (∂Cε),WT ). Each intersection point

of evτ (∂Cε) with WT corresponds to a pair (u, v) ∈ ∂Cε, such that the endpoint of
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the corresponding path ξ2 is obtained from the endpoint of ξ1 by a diffeomorphism
Φt for some 0 ≤ t ≤ T (in other words, Φt(γ(u)) = γ(v)) and the homotopy class
of the path ξ−1

2 ◦Φt(γ(u)) ◦ ξ1 is τ . Let us study separately each of the three parts
of the boundary ∂Cε. Denote by ∂− the part of ∂Cε on which u = ε, by ∂+ the
part on which v = 1 − ε, and ∂= the part on which u + ε = v (with the induced
orientation).

Denote by 〈γ1, γ2〉
τ the coefficient of τ in 〈γ1, γ2〉, see (3).

Lemma 14. We have I(evτ (∂−),WT ) = 〈γ,Φ−〉
τ and I(evτ (∂+),WT ) = 〈Φ+, γ〉τ .

Thus
∑

τ I(evτ (∂−),WT ) + I(evτ (∂+),WT ) = 2 indT (γ, p)

Proof. For (u, v) ∈ ∂− we have u = ε and 2ε ≤ v ≤ 1− ε, thus we are interested in
points of intersection of Φt(γ(ε)) with γ(v) for 0 ≤ t ≤ T and 2ε ≤ v ≤ 1 − ε. But
for small ε these are just intersections of Φ+ (see Section 2.2) with the whole of
γ. Moreover, it is easy to check that the signs of such intersection points coincide
with the signs sgn(d), d ∈ D(Φ+, γ) introduced in Section 2.1, which proves the
first equality of the lemma. The second equality is proven in the same way, after
we notice that ε ≤ u ≤ 1− 2ε and v = 1− ε correspond to intersections of Φt(γ(u))
with γ(v) = p, i.e., of γ with Φ−. ¤

Lemma 15. We have I(ev[γ](∂=),WT ) = w(γ,X) and I(evτ (∂=),WT ) = 0 for

τ 6= [γ].

Proof. For (u, v) ∈ ∂= we have u + ε = v. For small ε, values of u for which
Φt(γ(u)) = γ(u + ε) correspond to points in which γ ′ looks in the direction of X.
Each such point gives the homotopy class τ = [γ] and is counted with a positive
sign, if γ ′ turns counter-clockwise relative to X in a neighborhood of γ(t) and with
a negative sign otherwise. Comparison with the definition of w(γ,X) in Section 1.1
proves the lemma. ¤

This concludes the proof of Theorem 5.
Finally, to prove Theorem 9 we need another configuration space. Call Kε the

set of pairs of points (u, v) on a circle such that the length of the arc uv and the
length of the arc vu are both ≥ ε. Topologically, Kε is an annulus, and its boundary
∂ Kε is a union of two circles L+ and L− defined by the conditions |vu| = ε and
|uv| = ε, respectively. The rest of the proof copies the proof of Theorem 5.
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